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Preface

One feels right away that this is the kingdom of books. People working at the
library commune with books, with the life reflected in them, and so become
almost reflections of real-life human beings.

—Isaac Babel, “The Public Library”

z “Who is the intended audience for this work in

progress?” This question, asked almost apologetically by a friend, stumped
me for only a fraction of a second. With the clarity and explosiveness
usually reserved for a rare mathematical insight, the answer burst from
me: Umberto Eco! Polymath, brilliant semiotician, editor of the journal
Variaciones Borges, interpreter of “The Library of Babel,” and a favorite
author for many years—Eco struck me as the ideal reader of this writing.
(And Umberto, I hope you do read and enjoy this, someday.)

Of the more than six billion people who are not Umberto Eco, I
imagine that those who’d find this work appealing would share, to varying
degrees, the following traits: a familiarity with and affinity for Borges’
works, especially “The Library of Babel”; a nodding, perhaps cautious,
acquaintance with the thought that mathematics might not be the root
of all evil; and the habit of rereading sentences, paragraphs, and stories
for sheer delight, as well for playing with the superpositions of layers of
available meanings.

While it’s possible to set up a straw man and use it to wonder which
way of presenting information is “better,”
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A Multi-Claused Sentence vs. A Picture of Overlapping Sets

I take the view that the approaches are complementary; they aren’t two
opponents locked into a zero-sum game for which one side must prevail.
So, since part of my not-so-hidden agenda is to persuade those of a literary
temperament that mathematics can be more than the “problem/solution”
model of much rudimentary education, I present a Venn diagram
that visually encapsulates the speculations of the previous paragraph
(figure 1).

The intended audience is the intersection of the three different sets of
character traits. Judging mainly from the steady sales of Borges’ fiction, I
have managed to convince myself that besides you (presumably), there are
at least several hundred thousand people who fit this description.

If, however, an unimaginative education or a particularly unpleasant
teacher left a lingering distaste for all things mathematical, I hope this
book acts as a corrective. Mathematics can be creative, whimsical, and
revelatory all at once. More to the point, as embodied in the different
meanings of the word “analysis,” it is simultaneously a process and an
intellectual structure. Borges, a great imbiber of mathematics, seems to
have understood this idea and instantiated it in many of his stories—most
especially “The Library of Babel.” His imagination works in, through,
out, about, and all around logical strictures.

Borges
Aficionado

Rereader
Borges
Aficionado

Rereader

Math-Friendly

Intended
Audience

figure 1. Who is the intended audience?
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Conversely, for those of a mathematical bent who’ve not read Borges,
I hope this volume inspires two things: a desire to explore more of
Borges’ work—there are many riches to be found—and, equally, a desire
to learn more about the math tools I employ. We, as a society, are gifted
these days; many books introducing math to the casual reader are readily
available.

The chapters that are mathematical in nature will generally begin with
the introduction of a mathematical idea. Some exposition, and perhaps a
few examples, are given to help concretize the concept. Finally, the ideas
will be applied to some aspects of “The Library of Babel” towards the
desired end of producing an unimaginable (or unimagined) result.

Andrew Wiles, who proved Fermat’s last theorem, memorably analo-
gized the process of doing mathematics as follows:

You enter the first room of the mansion and it’s completely
dark. You stumble around bumping into the furniture but grad-
ually you learn where each piece of furniture is. Finally, after
six months or so, you find the light switch, you turn it on,
and suddenly it’s all illuminated. You can see exactly where you
were. Then you move into the next room and spend another six
months in the dark. (Singh, pp. 236–37)

Reading the math chapters of this work might be likened to stumbling
around in a dark room, bumping into furniture, and finally, after finding
the light switch, learning that you’re not in a mansion after all, but rather
facing away from the screen in a movie theater, and that the switch is
really a fire alarm.

After the suite of introductory material comes the touchstone for this
work: Andrew Hurley’s superb translation of “The Library of Babel.”
After the story, and unlike most math books, the chapters are logi-
cally independent and can be dipped and skimmed as fancy dictates.
(Of course, some intratextual references are unavoidable.) Although I’ve
endeavored to structure the book so that it may be enjoyed from start to
finish, based on predilections, nonlinear routes may be better suited for
different kinds of readers.

In fact, it’s safe to say that there are three main themes woven into this
book. The first one digs into the Library, peels back layers uncovering
nifty ideas, and then runs with them for a while. The second thread
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is found mostly in the “Math Aftermath” sections appended to the
chapters: in them, I develop the mathematics behind the ideas to a greater
degree and, in some cases, give step-by-step derivations for formulas
used in the main body of the chapter. (Allow me to emphasize that the
Math Aftermaths are—I hope—clear and engaging, but they certainly
aren’t required in order to understand and enjoy any other parts of the
book.) The third focus is on literary aspects of the story and Borges;
the chapters playing with these motifs come after those concerned with
the math.

In the first chapter, “Combinatorics: Contemplating Variations of the
23 Letters,” I use millennia-old ideas, alluded to in the story itself, to
calculate the number of books in the Library. Once the basic concept of
exponential notation is absorbed, the number is unexpectedly easy to find;
it is understanding the magnitude of that number that occupies the bulk of
the chapter. A number of previous critics also calculate this number, and
several have provided similar means of understanding its size. By contrast,
I fully explain the underlying mathematics and, moreover, add a new
twist to the calculation. Expanding on some of the ideas raised, the Math
Aftermath shows how to use a property of the logarithm function to recast
the number of distinct books of the Library in terms more familiar, more
amenable to our understanding. The chapter ends with the derivation of
an ancient counting formula.

After that, in “Information Theory: Cataloging the Collection,” I
consider the meaning of a catalogue for the Library and the forms that
it might take. The Math Aftermath takes some basic results in number
theory and applies them to aspects of the Library and the unknowability
of certain pieces of compressed information. Then, in “Real Analysis:
The Book of Sand,” I apply elegant ideas from the seventeenth century
and counterintuitive ideas of the twentieth century to the “Book of Sand”
described in the final footnote of the story. Three variations of the Book,
springing from three different interpretations of the phrase “infinitely
thin,” are outlined.

Next, in “Topology and Cosmology: The Universe (Which Oth-
ers Call the Library),” I employ late nineteenth- and early twentieth-
century mathematics to explore possible shapes of the Library. Ultimately,
I propose a rapprochement between the apparently conflicting views
outlined by the narrator of the story. In the Math Aftermath section
of the chapter, the discussion moves into somewhat more sophisticated
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domains by introducing two possible variations of the Library, each of
which possesses noteworthy traits, one example being nonorientability.

Following this, in “Geometry and Graph Theory: Ambiguity and
Access,” I use Borges’ descriptions of the Library to abstract the archi-
tecture of each floor of the Library and use it to unfold a surprising
consequence. Interested readers can continue the tale of the chapter by
following along in the Math Aftermath as I unpack an even stronger
mathematical result stemming from the story.

The next chapter, “More Combinatorics: Disorderings into Order,” is
a kind of a fantasia on the possibilities inherent in ordering and disorder-
ing the distribution of books in the Library, and it concludes the mathe-
matical section of the book.

After this, despite a desire to resist interpretation of the story, by draw-
ing on metaphors from Alan Turing and information theory, I propose a
new reading in “A Homomorphism: Structure into Meaning.” Following
that, in “Critical Points,” prior work on “The Library of Babel” serves as
a springboard to some compelling ruminations about life in the Library
and other topics. Finally, in “Openings,” a “What did he know and when
did he know it? How did he know it?” attitude is adopted vis-à-vis Borges
and mathematics. Was he a mathematician? A philosopher? A visionary
writer blithely unaware of the depth of his insights?

The literary chapters are followed by a cortege of back matter, begin-
ning with an appendix, “Dissecting the 3-Sphere,” for those who want a
refresher on how equations capture the characteristics and properties of
multidimensional spheres. The appendix may sound scarier than it really
is; I don’t use much beyond the Pythagorean theorem, and I even provide
a review of that.

In general, I avoid mathematical notation beyond that encountered in
middle school or perhaps the early years of high school. However, in case
it is unfamiliar, following the appendix is a short list of notations with
definitions. Speaking of definitions, there’s a lot to say on the matter.
Mathematics is an intellectual discipline built on definitions; indeed, the
axioms of mathematics are exactly definitions that have been accepted
as plausible and true by the concerted critical faculty of millions of
thinkers around the world aggregated over the past several millennia.
Moreover, these days great theoretical breakthroughs occur when brilliant
mathematicians see new interrelations and make definitions that enable a
cascade of untold consequences to be discovered by other workers in



xvi S p r e f a c e

the field. For us, definitions will be considerably more prosaic; I italicize
words that strike me as being of a technical nature, outside the usual
range of quotidian use, and provide definitions in a glossary following the
notations and the endnotes.

As a reader, when I encounter an endnote, I’m compelled almost
against my will to flip to the back of the book to learn what the endnote
says.1 As I writer, I find that despite my best efforts to incorporate them
into the body of the book, my work includes diverting digressions, fine
points of mathematics that might interest only specialists, and citations to
other works. All of these are consigned to the endnotes.

After the glossary, an annotated list of suggested readings is provided
for those with curiosity primed to learn more of the mathematics used in
the book. A bibliography of references cited or consulted rounds out the
end matter.



Introduction

We adore chaos because we love to produce order.
—M. C. Escher

z It’s an ironic joke that borges would have

appreciated: I am a mathematician who, lacking Spanish, perforce reads
“The Library of Babel” in translation. Furthermore, although I bring
several thousand years of theory to bear on the story, none of it is literary
theory.

Having issued these caveats, it is my purpose to make explicit a
number of mathematical ideas inherent in the story. My goal in this task is
not to reduce the story in any capacity; rather it is to enrich and edify the
reader by glossing the intellectual margins and substructures. Borges was a
consummate synthesist; his lapidary prose sparkles and reveals unexpected
depths when examined from any angle or perspective. I submit that
because of his well-known affection for mathematics, exploring the story
through the eyes of a mathematician is a dynamic, useful, and necessary
addition to the body of Borgesian criticism.

In what follows, I assume no special mathematical knowledge. I only
ask that the reader trust that I am a tour guide through a labyrinth, like
that marble pathway on the floor of the cathedral at Chartres, not the
gatekeeper of a Stygian maze without center or exit (figure 2). Beyond
enhancing the story, the reader’s reward will be an exposure to some
intriguing and entrancing mathematical ideas.
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figure 2. The labyrinth on the floor of the Chartres
Cathedral. Movement in a labyrinth is constrained to only
forwards or backwards motion. (Jeff Saward/Labyrinthos)

Borges was a master of understating ideas, allowing them the possi-
bility of gathering heft and power, of generating their own gravity. I’m
under no delusion that he traced out all the consequences of the dormant
mathematics I uncover. I allow myself the ambition, though, to paraphrase
what Borges wrote in a forward and hope that this book would have
taught him many things about himself (see Barrenchea, p. vii).

I request a last indulgence from the reader. The introductory material,
thus far, has been written in the friendly and confiding first person
singular voice. Starting in the next paragraph, I will inhabit the first
person plural for the duration of the mathematical expositions. This
should not be construed as a “royal we.” It has been a construct of the
community of mathematicians for centuries and it traditionally signifies
two ideas: that “we” are all in consultation with each other through space
and time, making use of each other’s insights and ideas to advance the
ongoing human project of mathematics, and that “we”—the author and
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reader—are together following the sequences of logical ideas that lead to
inexorable, and sometimes poetic, conclusions.

A word, too, about the language in the book. We started our college
years intending to be some sort of creative writer. Beyond the insight
mathematics offered into the natural world and epiphenomena of life,
and beyond the aesthetic joy at understanding how the iron rules of logic
crystallize a good proof into a work of art, one of the reasons we turned
to math was the lilt and rhythm of the “if-then” syntax coupled with the
musicality of words often repeated, such as “thus,” “hence,” “suppose,”
and “let.” We hope our readers might develop an ear for this music, too.

We close the introduction by offering several related disclaimers.
Mathematics, like any discipline, is not a monolith; it’s a sprawling agglu-
tination of overlapping and intersecting fields and specialties: one’s talents,
tastes, and beliefs determine individual focus. We carefully checked and
rechecked our ideas, mathematics, and figures. To the best of our knowl-
edge, there are no mistakes. However, a different mathematician might
well expose divergent mathematical themes from the story and utilize
different sets of ideas to explain them.

Furthermore, there’s a natural tendency for an individual reaching
across traditional boundaries to be perceived as a universal embodi-
ment of the foreign, the other. Although our inductions and deductions
are correct, some mathematicians might issue philosophic challenges to
underlying assumptions, especially in the chapters “Real Analysis” and
“More Combinatorics.” Consequently, no one, including the author,
should be seen as a Representative or Ambassador, speaking in one
voice for an ideologically unified Entity of Mathematicians: such an
Entity of Mathematicians simply doesn’t exist. (Lest this be subject to
misinterpretation, allow us to note that all mathematicians would agree
on the centrality of logically consistent deductions and derivations from
agreed-upon axioms.)

It’s important to bear in mind that the mathematical expositions
contained herein are not rigorously developed, nor are they intended
as comprehensive introductions to the various theories. Just as a stirring
musical performance will not transform a concertgoer into a musician,
composer, lyricist, musicologist, or music critic, so this book won’t
transform a reader into any kind of a mathematician. However, just as
a concert may move, inspire, or transfigure a listener, so we hope that this
book will stimulate, dazzle, and expand its readers.
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Finally, about the title of the book: why the word “unimaginable”? By
way of an answer, we note that in his sixth Meditation, Descartes makes
clear the distinction between simply naming a thing and visualizing it in
a clear, precise way that allows for mental manipulations.

I note first the difference between imagination and pure intel-
lection or conception. For example, when I imagine a triangle,
I not only conceive it as a figure composed of three lines, but
moreover consider these three lines as being present by the
power and internal application of my mind, and that is properly
what I call imagining. Now if I wish to think of a chiliagon, I
indeed rightly conceive that it is a figure composed of a thousand
sides, as easily as I conceive that a triangle is a figure composed
of only three sides; but I cannot imagine the thousand sides of
a chiliagon, as I do the three of a triangle, neither, so to speak,
can I look upon them as present with the eyes of my mind.

Some of the ideas we’ll talk about, such as titanic numbers and higher
dimensions, are unimaginable in this sense. We can give names to the
ideas, use metaphors to approach them, give simple examples to substitute
in as models, and try to find a consistent set of rules and mathematical
objects that encapsulate the essence of the ideas—but we will never be
able to visualize them any more than we could Descartes’ thousand-sided
chiliagon. Indeed, our task as your guide is to trigger the processes by
which you build intuition and insight into the Unimaginable.
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The Library of Babel
Jorge Luis Borges

By this art you may contemplate the variation of the 23 letters. . . .
—Anatomy of Melancholy, Pt. 2, Sec. II, Mem. IV

z T h e un i v e r s e (wh i ch oth e r s c a l l th e

Library) is composed of an indefinite, perhaps infinite
number of hexagonal galleries. In the center of each gallery is a ventilation
shaft, bounded by a low railing. From any hexagon one can see the floors
above and below—one after another, endlessly. The arrangement of the
galleries is always the same: Twenty bookshelves, five to each side, line
four of the hexagon’s six sides; the height of the bookshelves, floor to
ceiling, is hardly greater than the height of a normal librarian. One of the
hexagon’s free sides opens onto a narrow sort of vestibule, which in turn
opens onto another gallery, identical to the first—identical in fact to all.
To the left and right of the vestibule are two tiny compartments. One is
for sleeping, upright; the other, for satisfying one’s physical necessities.
Through this space, too, there passes a spiral staircase, which winds
upward and downward into the remotest distance. In the vestibule there
is a mirror, which faithfully duplicates appearances. Men often infer from
this mirror that the Library is not infinite—if it were, what need would
there be for that illusory replication? I prefer to dream that burnished
surfaces are a figuration and promise of the infinite. . . . Light is provided
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by certain spherical fruits that bear the name “bulbs.” There are two
of these bulbs in each hexagon, set crosswise. The light they give is
insufficient, and unceasing.

Like all the men of the Library, in my younger days I traveled; I
have journeyed in quest of a book, perhaps the catalog of catalogs. Now
that my eyes can hardly make out what I myself have written, I am
preparing to die, a few leagues from the hexagon where I was born.
When I am dead, compassionate hands will throw me over the railing;
my tomb will be the unfathomable air, my body will sink for ages, and
will decay and dissolve in the wind engendered by my fall, which shall
be infinite. I declare that the Library is endless. Idealists argue that the
hexagonal rooms are the necessary shape of absolute space, or at least of
our perception of space. They argue that a triangular or pentagonal chamber
is inconceivable. (Mystics claim that their ecstasies reveal to them a circular
chamber containing an enormous circular book with a continuous spine
that goes completely around the walls. But their testimony is suspect, their
words obscure. That cyclical book is God.) Let it suffice for the moment
that I repeat the classic dictum: The Library is a sphere whose exact center is
any hexagon and whose circumference is unattainable.

Each wall of each hexagon is furnished with five bookshelves; each
bookshelf holds thirty-two books identical in format; each book contains
four hundred ten pages; each page, forty lines; each line, approximately
eighty black letters. There are also letters on the front cover of each book;
those letters neither indicate nor prefigure what the pages inside will say. I
am aware that that lack of correspondence once struck men as mysterious.
Before summarizing the solution of the mystery (whose discovery, in
spite of its tragic consequences, is perhaps the most important event in
all history), I wish to recall a few axioms.

First: The Library has existed ab æternitate. That truth, whose immedi-
ate corollary is the future eternity of the world, no rational mind can
doubt. Man, the imperfect librarian, may be the work of chance or
of malevolent demiurges; the universe, with its elegant appointments—
its bookshelves, its enigmatic books, its indefatigable staircases for the
traveler, and its water closets for the seated librarian—can only be
the handiwork of a god. In order to grasp the distance that separates
the human and the divine, one has only to compare these crude trem-
bling symbols which my fallible hand scrawls on the cover of a book
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with the organic letters inside—neat, delicate, deep black, and inimitably
symmetrical.

Second: There are twenty-five orthographic symbols.1 That discovery
enabled mankind, three hundred years ago, to formulate a general theory
of the Library and thereby satisfactorily solve the riddle that no conjecture
had been able to divine—the formless and chaotic nature of virtually all
books. One book, which my father once saw in a hexagon in circuit
15–94, consisted of the letters M C V perversely repeated from the first
line to the last. Another (much consulted in this zone) is a mere labyrinth
of letters whose penultimate page contains the phrase O Time thy pyramids.
This much is known: For every rational line or forthright statement there
are leagues of senseless cacophony, verbal nonsense, and incoherency.
(I know of one semibarbarous zone whose librarians repudiate the “vain
and superstitious habit” of trying to find sense in books, equating such a
quest with attempting to find meaning in dreams or in the chaotic lines
of the palm of one’s hand. . . . They will acknowledge that the inventors
of writing imitated the twenty-five natural symbols, but contend that
that adoption was fortuitous, coincidental, and that books in them-
selves have no meaning. That argument, as we shall see, is not entirely
fallacious.)

For many years it was believed that those impenetrable books were in
ancient or far-distant languages. It is true that the most ancient peoples,
the first librarians, employed a language quite different from the one we
speak today; it is true that a few miles to the right, our language devolves
into dialect and that ninety floors above, it becomes incomprehensible.
All of that, I repeat, is true—but four hundred ten pages of unvarying
M C V’s cannot belong to any language, however dialectal or primitive it
may be. Some have suggested that each letter influences the next, and that
the value of M C V on page 71, line 3, is not the value of the same series
on another line of another page, but that vague thesis has not met with
any great acceptance. Others have mentioned the possibility of codes;

1 The original manuscript has neither numbers nor capital letters; punctuation is limited
to the comma and the period. Those two marks, the space, and the twenty-two letters of
the alphabet are the twenty-five sufficient symbols that our unknown author is referring to.
[Ed. note.]
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that conjecture has been universally accepted, though not in the sense in
which its originators formulated it.

Some five hundred years ago, the chief of one of the upper hexagons2

came across a book as jumbled as all the others, but containing almost two
pages of homogeneous lines. He showed his find to a traveling decipherer,
who told him that the lines were written in Portuguese; others said it was
Yiddish. Within the century experts had determined what the language
actually was: a Samoyed-Lithuanian dialect of Guaraní, with inflections
from classical Arabic. The content was also determined: the rudiments
of combinatory analysis, illustrated with examples of endlessly repeating
variations. Those examples allowed a librarian of genius to discover the
fundamental law of the Library. This philosopher observed that all books,
however different from one another they might be, consist of identical
elements: the space, the period, the comma, and the twenty-two letters
of the alphabet. He also posited a fact which all travelers have since
confirmed: In all the Library, there are no two identical books. From those
incontrovertible premises, the librarian deduced that the Library is
“total”—perfect, complete, and whole—and that its bookshelves contain
all possible combinations of the twenty-two orthographic symbols (a
number which, though unimaginably vast, is not infinite)—that is, all that
is able to be expressed, in every language. All—the detailed history of the
future, the autobiographies of the archangels, the faithful catalog of the
Library, thousands and thousands of false catalogs, the proof of the falsity
of those false catalogs, a proof of the falsity of the true catalog, the gnostic
gospel of Basilides, the commentary upon that gospel, the commentary
on the commentary on that gospel, the true story of your death, the
translation of every book into every language, the interpolations of every
book into all books, the treatise Bede could have written (but did not)
on the mythology of the Saxon people, the lost books of Tacitus.

When it was announced that the Library contained all books, the
first reaction was unbounded joy. All men felt themselves the possessors
of an intact and secret treasure. There was no personal problem, no

2 In earlier times, there was one man for every three hexagons. Suicide and diseases of
the lung have played havoc with that proportion. An unspeakably melancholy memory: I
have sometimes traveled for nights on end, down corridors and polished staircases, without
coming across a single librarian.



t h e l i b r a ry o f b a b e l S 7

world problem, whose eloquent solution did not exist—somewhere in
some hexagon. The universe was justified; the universe suddenly became
congruent with the unlimited width and breadth of humankind’s hope. At
that period there was much talk of The Vindications—books of apologiæ
and prophecies that would vindicate for all time the actions of every
person in the universe and that held wondrous arcana for men’s futures.
Thousands of greedy individuals abandoned their sweet native hexagons
and rushed downstairs, upstairs, spurred by the vain desire to find their
Vindication. These pilgrims squabbled in the narrow corridors, muttered
dark imprecations, strangled one another on the divine staircases, threw
deceiving volumes down ventilation shafts, were themselves hurled to
their deaths by men of distant regions. Others went insane. . . . The
Vindications do exist (I have seen two of them, which refer to persons in
the future, persons perhaps not imaginary), but those who went in quest
of them failed to recall that the chance of a man’s finding his own Vin-
dication, or some perfidious version of his own, can be calculated to be
zero.

At that same period there was also hope that the fundamental
mysteries of mankind—the origin of the Library and of time—might
be revealed. In all likelihood those profound mysteries can indeed be
explained in words; if the language of the philosophers is not sufficient,
then the multiform Library must surely have produced the extraor-
dinary language that is required, together with the words and gram-
mar of that language. For four centuries, men have been scouring the
hexagons. . . . There are official searchers, the “inquisitors.” I have seen
them about their tasks: they arrive exhausted at some hexagon, they talk
about a staircase that nearly killed them—rungs were missing—they speak
with the librarian about galleries and staircases, and, once in a while, they
take up the nearest book and leaf through it, searching for disgraceful or
dishonorable words. Clearly, no one expects to discover anything.

That unbridled hopefulness was succeeded, naturally enough, by a
similarly disproportionate depression. The certainty that some bookshelf
in some hexagon contained precious books, yet that those precious books
were forever out of reach, was almost unbearable. One blasphemous sect
proposed that the searches be discontinued and that all men shuffle letters
and symbols until those canonical books, through some improbable stroke
of chance, had been constructed. The authorities were forced to issue
strict orders. The sect disappeared, but in my childhood I have seen old
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men who for long periods would hide in the latrines with metal disks and
a forbidden dice cup, feebly mimicking the divine disorder.

Others, going about it in the opposite way, thought the first thing to
do was eliminate all worthless books. They would invade the hexagons,
show credentials that were not always false, leaf disgustedly through a
volume, and condemn entire walls of books. It is to their hygienic,
ascetic rage that we lay the senseless loss of millions of volumes. Their
name is execrated today, but those who grieve over the “treasures”
destroyed in that frenzy overlook two widely acknowledged facts: One,
that the Library is so huge that any reduction by human hands must
be infinitesimal. And two, that each book is unique and irreplaceable,
but (since the Library is total) there are always several hundred thousand
imperfect facsimiles—books that differ by no more than a single letter,
or a comma. Despite general opinion, I daresay that the consequences
of the depredations committed by the Purifiers have been exaggerated
by the horror those same fanatics inspired. They were spurred on by
the holy zeal to reach—someday, through unrelenting effort—the books
of the Crimson Hexagon—books smaller than natural books, books
omnipotent, illustrated, and magical.

We also have knowledge of another superstition from that period:
belief in what was termed the Book-Man. On some shelf in some
hexagon, it was argued, there must exist a book that is the cipher and
perfect compendium of all other books, and some librarian must have
examined that book; this librarian is analogous to a god. In the language
of this zone there are still vestiges of the sect that worshiped that distant
librarian. Many have gone in search of Him. For a hundred years, men
beat every possible path—and every path in vain. How was one to
locate the idolized secret hexagon that sheltered Him? Someone proposed
searching by regression: To locate book A, first consult book B, which
tells where book A can be found; to locate book B, first consult book
C, and so on, to infinity. . . . It is in ventures such as these that I have
squandered and spent my years. I cannot think it unlikely that there is such
a total book3 on some shelf in the universe. I pray to the unknown gods

3 I repeat: In order for a book to exist, it is sufficient that it be possible. Only the
impossible is excluded. For example, no book is also a staircase, though there are no
doubt books that discuss and deny and prove that possibility, and others whose structure
corresponds to that of a staircase.
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that some man—even a single man, tens of centuries ago—has perused
and read that book. If the honor and wisdom and joy of such a reading are
not to be my own, then let them be for others. Let heaven exist, though
my own place be in hell. Let me be tortured and battered and annihilated,
but let there be one instant, one creature, wherein thy enormous Library
may find its justification.

Infidels claim that the rule in the Library is not “sense,” but “non-
sense,” and that “rationality” (even humble, pure coherence) is an almost
miraculous exception. They speak, I know, of “the feverish Library,
whose random volumes constantly threaten to transmogrify into others,
so that they affirm all things, deny all things, and confound and confuse all
things, like some mad and hallucinating deity.” Those words, which not
only proclaim disorder but exemplify it as well, prove, as all can see, the
infidels’ deplorable taste and desperate ignorance. For while the Library
contains all verbal structures, all the variations allowed by the twenty-five
orthographic symbols, it includes not a single absolute piece of nonsense.
It would be pointless to observe that the finest volume of all the many
hexagons that I myself administer is titled Combed Thunder, while another
is titled The Plaster Cramp, and another, Axaxaxas mlö. Those phrases, at
first apparently incoherent, are undoubtedly susceptible to cryptographic
or allegorical “reading”; that reading, that justification of the words’
order and existence, is itself verbal and, ex hypothesi, already contained
somewhere in the Library. There is no combination of characters one can
make—dhcmrlchtdj, for example—that the divine Library has not foreseen
and that in one or more of its secret tongues does not hide a terrible
significance. There is no syllable one can speak that is not filled with
tenderness and terror, that is not, in one of those languages, the mighty
name of a god. To speak is to commit tautologies. This pointless, verbose
epistle already exists in one of the thirty volumes of the five bookshelves
in one of the countless hexagons—as does its refutation. (A number n of
the possible languages employ the same vocabulary; in some of them, the
symbol “library” possesses the correct definition “everlasting, ubiquitous
system of hexagonal galleries,” while a library—the thing—is a loaf of
bread or a pyramid or something else, and the six words that define it
themselves have other definitions. You who read me—are you certain
you understand my language?)

Methodical composition distracts me from the present condition of
humanity. The certainty that everything has already been written annuls



10 S u n i m a g i n a b l e m at h e m at i c s

us, or renders us phantasmal. I know districts in which the young people
prostrate themselves before books and like savages kiss their pages, though
they cannot read a letter. Epidemics, heretical discords, pilgrimages that
inevitably degenerate into brigandage have decimated the population. I
believe I mentioned the suicides, which are more and more frequent
every year. I am perhaps misled by old age and fear, but I suspect that
the human species—the only species—teeters at the verge of extinction,
yet that the Library—enlightened, solitary, infinite, perfectly unmoving,
armed with precious volumes, pointless, incorruptible, and secret—will
endure.

I have just written the word “infinite.” I have not included that
adjective out of mere rhetorical habit; I hereby state that it is not illogical
to think that the world is infinite. Those who believe it to have lim-
its hypothesize that in some remote place or places the corridors and
staircases and hexagons may, inconceivably, end—which is absurd. And
yet those who picture the world as unlimited forget that the number of
possible books is not. I will be bold enough to suggest this solution to the
ancient problem: The Library is unlimited but periodic. If an eternal traveler
should journey in any direction, he would find after untold centuries that
the same volumes are repeated in the same disorder—which, repeated,
becomes order: the Order. My solitude is cheered by that elegant hope.4

Mar del Plata, 1941

4 Letizia Alvarez de Toledo has observed that the vast Library is pointless; strictly
speaking, all that is required is a single volume, of the common size, printed in nine- or
ten-point type, that would consist of an infinite number of infinitely thin pages. (In the
early seventeenth century, Cavalieri stated that every solid body is the super-position of an
infinite number of planes.) Using that silken vademecum would not be easy: each apparent
page would open into other similar pages; the inconceivable middle page would have no
“back.”
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Combinatorics
Contemplating Variations of the 23 Letters

There are some, King Gelon, who think that the number of the sand
is infinite in multitude; and I mean by the sand not only that which
exists about Syracuse and the rest of Sicily but also that which is found in
every region whether inhabited or uninhabited. Again there are some who,
without regarding it as infinite, yet think that no number has been named
which is great enough to exceed its multitude.

—Archimedes, The Sand Reckoner

z W e b e g i n w i th a pa e an to th e mod e rn

method of denoting numbers, especially the conven-
tion of exponential notation, employed first by Descartes in 1637, then
extended over the next few decades, primarily by Napier and Newton.
(These days, it’s commonly also called scientific notation.) In one of his
most famous works, Archimedes, a singularly brilliant intellect of the
classical world, needed approximately 12 pages (in English translation)
to create names of numbers and methods of multiplication to produce
an upper bound—a maximal estimate, a cap—on the number of grains of
sand in the world. By using modern notation, particularly the idea of the
exponential, it will take us less than one paragraph to produce an upper
bound on the number of grains of sand in the universe. Furthermore, in
short order these exponential conventions confer the power to accomplish
a task that might well have stymied Archimedes: calculating the precise
number of distinct books in the Library.
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A positive integer exponent signifies, “the amount of times some
number is multiplied by itself.” For example,

53 = 5 · 5 · 5 and 24,781 = 2 · 2 · . . . · 2 · 2︸ ︷︷ ︸
4,781 times

are concise ways to express a “small” number

53 = 125

and a very large number.∗ There are only two rules regarding the manip-
ulation of exponentials that concern us. The first:

Rule 1: Multiplying numbers written in exponential notation
is equivalent to adding the exponents.

For example:

53 · 514 = (5 · 5 · 5) · (5 · 5 · . . . · 5 · 5)︸ ︷︷ ︸
14 times

= (5 · 5 · . . . · 5 · 5)︸ ︷︷ ︸
17 times

= 517.

The second rule nicely complements the first.

∗ 167652204904152536250654781631104887775960706846318297081203114099863
9666509175886894231690090777738457409057440857788273206177211093165994739
9568714591497545824796138075835421197279779754323576490572256786468422800
3984140011308404044321592205678736478798197529921801160919630700034601028
7705713385998646083820133469810599271322545734977766782384010771401829567
9082043307285550872688827887567010456660198813317308577461625092980751975
9554422254267977193932033675325750012118425565945197783300697670477973441
8014035299242025994947002632316703732187102015655408002862898537203501628
9304847323104057902026971342243620895518683161620610971532819079644261674
0197330756096397254259481411179297605714105015291757369390571424809705710
5279956426202806971966214302757930932259278003765598829949253276126891960
0892082956363896640596815107919370351679897793541041087048548047318020669
2696460141319574750537162302401458151912894683905017520492915492610250607
6582008204592335799738716245815330390278271925948220764773260809099948460
0968177752900336140864517350814719001366340483051936550164732484666637269
5454023369419855605974124635054913613707789078539963199486512143281891270
6334872348204609785169622459452184043325373609515688263387816165515570835
3469566551811184159038072931547810565363280312371971406298562246478087376
1799170525539055256885813059255491913245295763000439144465356103197575576
731159299217928919322435311018790938012446381695777636352
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Rule 2: Dividing numbers written in exponential notation is
equivalent to subtracting the denominator’s exponent from the
numerator’s.

For example:

24,781

214
=

4,781 times︷ ︸︸ ︷
2 · 2 · . . . · 2 · 2
2 · 2 · . . . · 2 · 2︸ ︷︷ ︸

14 times

=

14 times︷ ︸︸ ︷
2 · 2 · . . . · 2 · 2
2 · 2 · . . . · 2 · 2︸ ︷︷ ︸

14 times

×

4,767 times︷ ︸︸ ︷
2 · 2 · . . . · 2 · 2

1

=

4,767 times︷ ︸︸ ︷
2 · 2 · . . . · 2 · 2 = 24,767.

The second rule leads to the useful convention of using a negative expo-
nent to represent a power in the denominator, for instance,

1
214

= 2−14.

Thus the previous example may concisely be written

24,781

214
=

(
24,781) (

2−14) = 24,781+(−14) = 24,767.

It is remarkable that such relatively simple notation can transform rela-
tively complicated tasks, multiplication and division, into the relatively
easy and intuitive computations of addition and subtraction.

While pondering previous critical responses to “The Library of
Babel,” we discovered that a number of people either calculated the
number of books or gave some indication of how one might go about
it.1 Our intent in providing the lightning review of exponential notation
is to demystify the calculation, and then, more importantly, to give a sense
of the enormity of the Library. Then, after the calculation, we tease out a
previously overlooked detail from the story and use it to set a new lower
bound on the number of books in the Library. (For us, a lower bound will
be number that says, “We guarantee that there are at least this many books
in the Library.”)

For the purposes of this book, combinatorics is the branch of math-
ematics that counts the number of ways objects can be combined or
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ordered. Before using combinatorics to calculate the number of the
books, let’s consider 10 familiar orthographic objects, the symbols we
use as representations for digits: 3, 8, 9, 1, 6, 2, 0, 5, 7, 4. We
deliberately disordered them to help you see them not as you usually
do, as numbers, but rather as symbolic representatives of the numbers 0
through 9.

Using these symbols, we’d like to occupy exactly one slot with one
symbol, and so we ask: how many distinct ways can we fill one slot?
Hopefully, the answer is clear—there are 10 ways to fill one slot with one
of the symbols.

1. 0
2. 1
3. 2
4. 3
5. 4
6. 5
7. 6
8. 7
9. 8

10. 9

Now, how many distinct ways are there to fill two slots, such that
each slot contains one symbol? One complete list of answers, ordered
in a familiar way, reads: 00, 01, 02, 03, . . . , 97, 98, 99. So we see that
there are 100 ways to fill the two slots, given that each slot contains
one symbol and that repetition is allowed (enabling such combinations
as 00, 11, 22, 33, etc.). Deliberately blurring the distinction between the
orthographic symbols and the numbers they represent, we note that there
are

100 = 10 · 10 = 102

ways to fill the two slots. If we ask how many distinct ways there are
to fill three slots, such that repetition is allowed and each slot contains
one symbol, we generalize our work from above and produce a complete
list that reads: 000, 001, 002, 003, . . . , 997, 998, 999. This time, we
see that there are 1,000 ways to fill the three slots. Continuing to blur
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the distinction between the orthographic symbols and the numbers they
represent, it follows that there are

1,000 = 10 · 10 · 10 = 103

distinct ways to fill the three slots. By seizing on these ideas, by sensing
that a simple pattern has been established and can be used to predict what
we couldn’t possibly list, we may ask how many distinct ways there are to
fill, for example, 36 slots, where each slot contains one of our 10 allowed
orthographic symbols and repetition of symbols is allowed. By applying
the reasoning we established above, we see that there must be 1036 ways;
that is, a 1 followed by thirty-six 0s—a thousand billion, billion, billion,
billion, billion, billion ways:

1036 = 1,000,000,000,000,000,000,000,000,000,000,000,000.

Just for a lark, here are the first few and last few slot-fillings of the usual
way one would list the fillings.

1. 000000000000000000000000000000000000
2. 000000000000000000000000000000000001
3. 000000000000000000000000000000000002

(Quite a few more!)

(1036 − 2). 999999999999999999999999999999999997
(1036 − 1). 999999999999999999999999999999999998

1036. 999999999999999999999999999999999999

And that’s the end of the list.

S
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In an article in the academic journal Variaciones Borges, our ideal reader,
Umberto Eco, argues that the exact number of distinct volumes in the
Library is irrelevant to both the story and to the reader. To the extent that
the numbers of pages, lines, and letters in each book were chosen arbi-
trarily by Borges, we agree with him. (See the beginning of the chapter
“Geometry and Graph Theory” for a quote from Borges regarding this
matter.) However, we assert that understanding the combinatorial process
that produces the exact number of distinct volumes is both important and
relevant to an understanding of the story. So let’s apply these ideas to the
story and, given the numbers and constraints Borges provides, use them
to calculate the number of distinct volumes in the Library.

In “The Library of Babel,” Borges writes:

. . . each book contains four hundred ten pages; each page, forty
lines; each line, approximately eighty black letters. There are
also letters on the front cover of each book; these letters neither
indicate nor prefigure what the pages inside will say.

From these lines, we conclude each book consists of
410 · 40 · 80 = 1,312,000 orthographic symbols; that is, we may consider
a book as consisting of 1,312,000 slots to be filled with orthographic
symbols. Here a few more excerpts from the next few paragraphs:

There are twenty-five orthographic symbols. That discovery enabled
mankind, three hundred years ago, to formulate a general theory
of the Library and thereby satisfactorily resolve the riddle that no
conjecture had been able to divine—the formless and chaotic
nature of virtually all books. . .

Some five hundred years ago, the chief of one of the upper
hexagons came across a book as jumbled as all the others, but
containing almost two pages of homogeneous lines. He showed
his find to a traveling decipherer, who told him the lines were
written in Portuguese; others said it was Yiddish. Within the
century experts had determined what the language actually
was: a Samoyed-Lithuanian dialect of Guaraní, with inflections
from classical Arabic. The content was also determined: the
rudiments of combinatory analysis, illustrated with examples of
endlessly repeating variations. These examples allowed a librar-
ian of genius to discover the fundamental law of the Library.
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This philosopher observed that all books, however different from
one another they might be, consist of identical elements: the
space, the period, the comma, and the twenty-two letters of the
alphabet. He also posited a fact which all travelers have since
confirmed: In all the Library, there are no two identical books. From
those incontrovertible premises, the librarian deduced that the
Library is “total”—perfect, complete, and whole—and that its
bookshelves contain all possible combinations of the twenty-two
orthographic symbols (a number which, though unimaginably
vast, is not infinite)—that is, all that is able to be expressed, in
every language.

How many distinct books constitute the Library? Each book has
1,312,000 slots, each of which may be filled with 25 orthographic
symbols—this is the “variations with unlimited repetition” mentioned
above. Again, by employing the ideas outlined above, there are

25 ways to fill one slot,
25 · 25 = 252 ways to fill two slots,
25 · 25 · 25 = 253 ways to fill three slots,
and so on,
and so on for 1,312,000 slots.

It follows immediately that there are

251,312,000

distinct books in the Library. That’s it.
Somehow, it feels all too easy, even anticlimactic, as though instead

we should have had to write pages and pages of dense, technical, high-
level mathematics, overcoming one complex puzzle after another, before
arriving at the answer. But most of the beauty—the elegance—of mathe-
matics is this: applying potent ideas and clean notation to a problem much
as the precise taps of a diamond-cutter cleave and husk the dispensable
parts of the crystal, ultimately revealing the fire within. (Perhaps we
should have ended the calculation by writing “That’s it!” instead of
“That’s it.”)

Our new twist on these calculations involves what Hurley translates as
the “letters on the front cover of each book.” For the sake of precision,
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we note that the Spanish reads “el dorso de cada libro,” which translates
literally as “the back of the book.” Idiomatically and bibliographically,
however, the sense of this phrase is that the letters are on the spine of
the Library’s books. As such, the interpretation we use for the rest of this
book is that the letters are on the spine.

Now, the number 251,312,000 we calculated above doesn’t account
for these spinal letters. It strikes us as likely that, within the imaginary
universe of the Library, a book with the letters The Plaster Cramp written
on the spine, whose 1,312,000 slots are filled by the repeated sequence
of orthographic symbols MCV, should be considered as a book distinct
from one with the exact same pages which is instead imprinted with
the letters Axaxaxas Mlö on the spine.2 Scanning through the original
Spanish version, “La biblioteca de Babel,” we find a book described with
the 19 orthographic symbols El calambre de yeso on its spine. This means
that there are a minimum of 19 slots to fill on each spine, and accounting
for these variations with repetition expands the Library by a factor of at
least

2519 = 363,797,880,709,171,295,166,015,625.

We write this number out explicitly to re-echo the vastness of the
numbers woven through the Library. Simply adding 19 orthographic
symbols on the spine magnifies the Library more than 300 septillion
times. For comparison, this number is roughly the number of microscopic
plant cells comprising a grove of 364 oak trees.3 So if the Library of
251,312,000 books is considered as one imperceptible plant cell, accounting
for differing symbols on the spine multiplies the Library into a grove of
364 giant oak trees.

However, since we cannot be sure of either the maximum number
of symbols on the spine of each book or of Borges’ intent, we restrict
ourselves to 251,312,000 books. This number, so easy to write, is, in a
powerful sense, utterly unimaginable. To see that we can’t see it, let’s
begin by converting this number to a power of 10, which puts it in a more
familiar context.

251,312,000 is just a little bit larger than 101,834,097;

which is, of course, a 1 followed by one million, eight hundred thirty-four
thousand, and ninety-seven 0s. We accomplish this conversion to a power
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1027

1027

1027 figure 3. Our universe, represented as a cube.

of 10 notation using the logarithmic function and discuss the mechanics in
the Math Aftermath portion of this chapter.

Could our universe possibly contain the Library? Current research
approximates the size of the universe as being about 1.5 × 1026 meters
across. Let’s simplify calculations and create an upper bound to the uni-
verse by overestimating its size and supposing that our universe is shaped
like a cube, each side of which measures 1027 meters (figure 3).

So, we’ll say that our cubic universe consists of approximately
1027 · 1027 · 1027=1081 cubic meters. If we assume that we may fit 1,000 =
103 Library books in a cubic meter—and this is an exceedingly generous
assumption—then our universe, if it consisted of nothing except books,
would contain

1081 · 103 = 1084 books.

This doesn’t make the slightest dent in the Library; it would take

101,834,097

1084
= 101,834,097 + (−84) = 101,834,013

universes the size of ours to hold just the books of the Library. What if
the books were each as small as a grain of sand?

Using a ruler shows that an average grain of sand is approximately one
millimeter across. If we assume a cubical shape combined with a perfect
packing, then we could fit approximately

103 · 103 · 103 = 109 = 1,000,000,000 = one billion

grain-of-sand books in a cubic meter. Multiplying by the size of the
universe, we find that the universe holds only

1081 · 109 = 1090 such books.
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That is, if the universe consisted of nothing but sand, it would hold at
most about 1090 grains of sand. As we promised at the beginning of the
chapter, using exponential notation allows us to estimate the number of
grains of sand considerably faster than Archimedes.

Once again, though, this hardly impacts the Library’s collection. As
a final illustration of this point, suppose that each book is shrunk to the
size of a proton; that is, shrunk to about 10−15 meters across. Given that
each book is 10−15 meters across, we could pack 1015 of them in a very
narrow one-meter-long strip. Thus, packing a cubic meter with proton-
sized books yields

1015 · 1015 · 1015 = 1045 books.

Our universe holds merely

1081 · 1045 = 10126 of these subatomic books.

Let’s adopt one more viewpoint in our efforts to conceptualize the
enormity and complexity of the Library. Perhaps the simplest books to
imagine, of which there are exactly 25, are those that consist of nothing
except one symbol, repeated for the entire book. For example, one such
book would consist of its 1,312,000 slots filled by the letter g .4 The first
two lines of that book would read

gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg

gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg

and so on for another 38 lines on the first page, followed by 40 more lines
on each of the remaining 409 pages: a veritable rhapsody in g .

Now allow a slight variation. The next set of books we consider are
those that consist of entirely the orthographic symbol g except for one h .
That is, exactly 1,311,999 slots will be filled with the letter g , while
exactly one slot will contain the letter h . One such book will begin

gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg

gggggggggggggggggggggggggggggggggggggggghggggggggggggggggggggggggggggggggggggggg

and, as above, all of the rest of the symbols in the book are the letter g .
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How many books like this are there? Well, there are exactly 1,312,000
different slots that the single h can occupy, and every other slot must be
filled with a g . Thus, there are exactly 1,312,000 such books.

Now, we allow ourselves to imagine a book that consists of 1,311,998
slots filled with the symbol g and two slots—not necessarily adjacent—
filled with an h . There are precisely

(1,312,000) · (1,311,999)

2
= 860,671,344,000

such books. (At the end of this chapter, see the second Math Aftermath,
“An Example of the Ars Combinatoria,” for an explanation of this and
the next two formulas.) Put into human terms, assuming the world
population is currently somewhat less than seven billion people, this
translates to every one of us enjoying a personal library of about 123
of these books.

If we next consider books that, excepting three instances of the letter
h , are all g , all the time, we perform a similar calculation to find that there
are exactly

(1,312,000) · (1,311,999) · (1,311,998)

6
= 376,399,693,995,104,000

such books. This number, although perhaps not appearing much larger
than the preceding one, expands these monotonous libraries to about 53
million distinct books for each person currently alive.

Pursuing this notion to its conclusion, by considering the number of
books consisting of a mere 16 occurrences of the letter h in an otherwise
uniform desert of the letter g , we find there are

3,683,681,259,485,362,310,918,865,543,989,208,654,728,931,149,
486,911,733,618,072,454,576,141,229,488,660,718,000

distinct books—about 3.7 × 1084 books—more than enough to fill three
cubic universes. These books, droning wearily of g with a little respite
provided only by the scant 16 instances of h , are not typographical
phantasmagoria to inflame the imagination or addle the senses, and yet
if they were all collected into a subsection of the Library, they would
occupy a space greater than three times our known universe.
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Finally, it would be a tedious, uninspired, but straightforward calcula-
tion to determine how big the Library needs be to hold the books in the
hexagonal configurations described by Borges. Given the work we’ve just
done, it should be clear that however the Library is constructed, any sort
of ambulatory circumnavigation would be utterly impossible for a human
being: a vigorous, long-lived librarian who managed to walk a little over
60 miles—about 100 kilometers—every day for 100 years would cover
somewhat less distance than light travels in two minutes. To cross our
universe, which is incomprehensibly dwarfed by the Library, light would
need to travel for at least 15 billion years.

The number of books in the Library, although easily notated, is unimag-
inable.



Math Aftermath I: The Logos
of Logarithms

There are those who dance to the rhythm that is played to them, those who
only dance to their own rhythm, and those who don’t dance at all.

—José Bergamín, The Rocket and the Star

This Aftermath is included for two purposes, one explanatory and one
hortatory. The expository side is to provide a basis for those who wish
to understand the details of how certain approximations and calculations
are made in this chapter, as well as the chapter “Real Analysis.” The
public relations portion is to reconceive of the logarithm as a func-
tion imbued with a friendly collection of useful, easily manipulated
properties.

For the purposes of this book, we’ll say that a function is a rule such that
for each legitimate number the rule is applied to, it returns back exactly
one number. The output number might be the same or different from
the input number; however, the important thing is that given a specific
input number, the output number for it is always the same. (There are
many interesting generalizations of this idea, including that of studying
spaces whose elements are themselves functions.) One of the functions
most misunderstood and maligned by generations of students is that of
the logarithm.

The logarithm (base 10) is typically notated log; frequently it is written
log(x) to emphasize it is a function: given an input of one number,
x, it outputs another number, log(x). The modern notation is quite



24 S u n i m a g i n a b l e m at h e m at i c s

evocative:

x → log(x).

We could, at this juncture, include a graph of the logarithmic func-
tion; after all, a picture is useful for nurturing our visual awareness.
However, we deliberately exclude such an illustration to hammer home
a point: the logarithm, as it turns out, is a function that may be defined
by a number of truly remarkable properties. Since really we only need to
use one of the properties, let’s jump right in: if x is any positive number,
and n is any number, then

log(xn) = n · log(x).

That is, the logarithm, remarkably, “lowers” the exponential, thereby
reducing it to a much more familiar operation—multiplication. There
are many marvelous implications of this property, but for our purposes,
the property alone will give us what we need.

Earlier in the chapter, using exponential notation, we found that there
are 251,312,000 distinct volumes in the Library. We’d like to contextualize
the number of books by putting that number into a somewhat more
familiar form. We choose to convert it to the power of 10 notation, 10n,
because we may think of that as a single 1 followed by n 0s. Therefore,
we set up the following equation and endeavor to solve it for n.

251,312,000 = 10n

When we solve this equation for n, we thus gain a greater intuition for
the number of books in the Library.

Here’s the key point: even though 251,312,000 and 10n are written
differently and look different, if we choose some n such that the two
numbers are equal, then they are, in fact, the same number. Since they are the
same number, by the definition of a function, it must the case that using
both representations of the number as inputs to the function entails that
both of the outputs must continue to be equal to each other. So we apply
the logarithm to both sides of the equation and get

log
(
251,312,000) = log (10n).
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Now, the remarkable property of the logarithm “brings the exponential
down” and gives

1,312,000 · log (25) = n · log (10) .

(In fact, things are even better than they appear, for log(10) is equal to 1,
but that need not concern us here.) Divide both sides by log(10) to solve
for n:

1,312,000 · log(25)
log(10)

= n.

By using a calculator, a computer, or even Henry Brigg’s log tables from
1617, we find

n ≈ 1,834,097.

Therefore,

251,312,000 ≈ 101,834,097.



Math Aftermath II: An Example
of the Ars Combinatoria

Drawing is a struggle between nature and the artist, in which the better the
artist understands the intentions of nature, the more easily he will triumph
over it. For him it is not a question of copying, but of interpreting in a simpler
and more luminous language.

—Charles Baudelaire, The Salon of 1846, VII. “On the Ideal
and the Model”

In the final analysis, a drawing simply is no longer a drawing, no matter how
self-sufficient its execution may be. It is a symbol, and the more profoundly
the imaginary lines of projection meet higher dimensions, the better.

—Paul Klee, The Diaries of Paul Klee 1898–1918, no. 681,
entry for July 1905

Here, we endeavor to explain the origins of the (possibly) mysterious
formulas appearing earlier in the chapter. The first one arises in the
context of trying to determine the number of distinct books in the Library
consisting of 1,311,998 occurrences of the letter g and two instances of
the letter h .

We abstract the books and hexagons away from the problem by noting
that what we are really interested in can be characterized as the question
“How many distinct ways exist to pick two objects from 1,312,000?” The
two objects, of course, correspond to the two slots that we will fill with
the letter h . So, the number of distinct ways to choose two objects from
1,312,000 corresponds precisely to the number of distinct books under
discussion.
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As it turns out, for millennia combinatorialists have known a formula
for this and related questions; in the most general terms, the number of
different ways to choose a subset of k objects from a set of n objects is
equal to

k terms︷ ︸︸ ︷
(n) · (n − 1) · (n − 2) · · · · · (n − (k − 1))

k!
.

One way to uncover the derivation of this formula is to break the
analysis into two parts, first explaining the terms appearing in the
numerator, and then understanding the term in the denominator. (Joe
Roberts, the professor who introduced me to combinatorial analy-
sis, helpfully said “attic” and “basement” instead of “numerator” and
“denominator.”)

We wish to choose one object from n distinct objects. Thus, we have
n choices for our first object and then we are left with n – 1 objects.
So, when we choose the second object, we have n – 1 distinct objects
to choose from. This means that choosing two objects is tantamount to
having (n) · (n – 1) ways to pick them: n ways to choose the first object
multiplied by (n – 1) ways to choose the second.

If we pick a third object, we are choosing from (n – 2) distinct objects,
and so the numerator grows accordingly. Notice that when we pick a
fourth object, we choose from (n – 3) distinct objects; thus, extending the
developing pattern, when we pick the kth object, we are selecting it from
the remaining (n – (k – 1)) distinct objects. Multiplying, in succession, all
of the choices yields the numerator (attic):

k terms︷ ︸︸ ︷
(n) · (n − 1) · (n − 2) · · · · · (n − (k − 1)) .

At this juncture, it’s reasonable to wonder why there needs to be a
denominator (basement). Why can’t we simply stop at the numerator, or,
put another way, what is wrong with what we’ve derived? The answer is
devilishly simple: there are a number of different ways to pick the exact
same subset of size k, and we don’t care in what order the k objects are
chosen. We just want to know which are the chosen ones.
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Let’s illustrate this with an easy example. We have a set, a collection,
of three distinct objects, {A, B, C}. Let’s choose all subsets consisting of
two distinct objects:

{A, B} {B, A}
{A, C} {C, A}
{B, C} {C, B}

If the order in which the objects are picked is important, then we have a
complete list of all subsets of size two. However, if order is unimportant,
then {A, B} and {B, A} are both names for the same subset. Really, then,
we would be happy with, say, this list.

{A, B}
{A, C}
{C, B}

Since all we care about is the number of ways to choose two things, and
we don’t care about the order, we need to divide out by the number of
repetitions, which in this case, is two. We thus arrive at the complete
formula for this example,

(first choice) · (second choice)

repetitions
=

3 · 2
2

= 3.

Another way to think about repetitions is as the number of distinct
orderings of, for instance, a set of k objects. There is a critical difference
between this and the exponential work from earlier in the chapter; when
calculating the number of books, we allowed an orthographic symbol
to be used over and over and over again—possibly 1,312,000 times. Or,
conversely, a symbol didn’t need to appear at all. In an ordering, every
object needs to appear exactly once. In the beginning of the chapter
“More Combinatorics,” we show how to calculate the number of distinct
orderings of a set of k objects: it’s a product of k integers, notated k! and
pronounced “k factorial.” For now, suffice it to note that

k! = k · (k − 1) · (k − 2) · (k − 3) · · · · · 4 · 3 · 2 · 1.

This explains the denominator of the formula: we divide out by all the
repetitions given by all the different orderings of the k chosen objects and
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thus achieve a masterpiece of the ars combinatoria:

(first choice) · (second choice) · · · · · (
kth choice

)
repetitions

=
(n) · (n − 1) · · · · · (n − (k − 1))

k!
.

Applying this formula to the situation of choosing subsets of size 16
from a set of size 1,312,000 yields the expression

(1,312,000) · (1,312,000 − 1) · · · · · (1,312,000 − (16 − 1))

16!

=
(1,312,000) · (1,311,999) · · · · · (1,311,986) · (1,311,985)

16 · 15 · 14 · 13 · 12 · 11 · 10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1

=
(1,312,000) · (1,311,999) · · · · · (1,311,986) · (1,311,985)

20,922,789,888,000

= 3,683,681,259,485,362,310,918,865,543,989,208,654,728,

931,149,486,911,733,618,072,454,576,141,229,488,660,

718,000

≈ 3.7 × 1084.



two

Information Theory
Cataloging the Collection

It is a very sad thing that nowadays there is so little useless information.
—Oscar Wilde, “A Few Maxims for the Instruction

of the Over-Educated”

z I nformat ion theory i s one of the youngest

fields in mathematics, essentially born in 1948 when Claude
Shannon published “A Mathematical Theory of Communication.” As
a discipline, it is still unfolding, still crystallizing into a way to analyze
and interpret the world. For the purposes of this book, we’ll say that
information theory is the study of the compression and communication
of complex information. We consider each book in the Library to be
a complex piece of information, and our inquiry takes the form of
investigating how a catalogue of the Library might encode information
about the content and location of books. Since the story was written
while Borges was tasked with cataloguing the collection of the Miguel
Cané Municipal Library, questions of this nature may have taken on rich
significance for him.

Typically, a library catalogue card, either physical or virtual, contains
two distinct kinds of information. The first sort uniquely specifies a
book in such a way that a reader with partial or incomplete information
still might identify the book: a title, author, edition, publisher, city of
publication, year of publication, and short description of the contents
generally appear on a card and prove sufficient. An ISBN also uniquely
specifies a book, but probably isn’t much use in finding a book if we
remember only a few digits of the number.
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The second type of information uniquely specifies a location in the
library, although additional knowledge is usually required. For exam-
ple, under most systems of cataloguing currently in use, the call num-
bers, in addition to uniquely specifying a book, include an abun-
dance of letters and digits, often interspersed with decimal points. If
one does not know, say, where the PQ books are shelved, the infor-
mation is degraded. Even if the books were arranged alphabetically
by author or title, for a large collection we’d still need to know in
what general region to begin our search. By analogy, many dictio-
naries have thumbnail indentations which enable readers quickly to
find a section of words beginning with one or several letters. Both
of these categories of information are problematic for the Library of
Babel.

A form a catalogue might take in principle is: Book (identifiers),
Hexagon (location), Shelf (only 20 per hexagon), Position on Shelf
(only 32 books per shelf). Perhaps surprisingly, self-referentiality is not a
problem. A volume of the catalogue, say the tenth, residing in Hexagon
39, Shelf 20, Position 14, could well be marked on the spine “Catalogue
Volume Ten,” and correctly describe itself as the tenth volume of the
catalogue and specify its location in Position 14, on Shelf 20, in Hexagon
39: there is no paradox. However, beginning with the obvious, here are
some of the difficulties that arise.

Clearly, the Library holds far too many books to be listed in one
volume; any catalogue would necessarily consist of a vast number of
volumes, which, perversely, are apt to be scattered throughout the
Library. Indeed, reminiscent of the approach of another of Borges’ stories,
“The Approach to Al-Mu’tasim,” and of the lines in “The Library of
Babel,”

To locate book A, first consult book B, which tells where book
A can be found; to locate book B, first consult book C, and so
on, to infinity. . . .

an immortal librarian trying to track down a specific book likely has
a better chance by making an orderly search of the entire library,
rather than finding a true catalogue entry for the book. Every plausible
entry from any plausible candidate catalogue volume would have to be
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tracked down, including regressive scavenger hunts. An immortal librarian
would spend a lot of time traversing the Library, ping-ponging back
and forth between different books purporting to be volumes of a true
catalogue.

After revealing the nature of the Library, the librarian notes that
contained in the Library are “the faithful catalog of the Library, thousands
and thousands of false catalogues, the proof of the falsity of those false
catalogs, a proof of the falsity of the true catalogue . . . ” This, then, is the
second problem of any catalogue: the only way to verify its faithfulness
would be to look up each book. Furthermore, the likelihood of any
book being located within a distance walkable within the life span of
a mortal librarian is, to all intents and purposes, zero. Sadly, even if
we were fortunate enough to possess a true catalogue entry for our
Vindication, presumably our Vindication would merely give details of
the death we encountered while spending our life walking in a fruitless
attempt to obtain the Vindication. (Recall in “The Library of Babel,”
Borges describes Vindications as “books of apology and prophecy which
vindicated for all time the acts of every man in the universe and retained
prodigious arcana for his future.”)

Let’s consider the first category of information found on library cards,
that which uniquely specifies the book. Authorship is moot. One might
argue that the God(s), or the Builder(s) of the Library, is (are) the author(s)
of any book. One might also make a claim that the author is an algorithm
embodied in a very short computer program which would, given time
and resources, generate all possible variations of 25 orthographic symbols
in strings of length 1,312,000. One could make the Borgesian argument
that One Man is the author of all books.

For that matter, the writer Pierre Menard, a quixotic character in
Borges’ story “The Don Quixote of Pierre Menard,” may as well be
credited with authorship of all the books in the Library.

Certainly there are many, many books whose first page resembles the
one in figure 4. How many such books? Specifying one page means that
80 symbols for each of 40 lines are “frozen.” This means that out of the
1,312,000 symbols of a book, the first 3,200 are taken, leaving 1,308,800
spaces to fill. By the work of the “Combinatorics” chapter, there are
thus precisely 251,308,800 books with a first page exactly the same as the
depicted title page. (Using logarithms as in the first Math Aftermath, this
number is seen to be approximately 101,829,623 books.) Viewed from a
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THE LIBRARY OF BABEL

BY JORGE LUIS BORGES

LIBRARY OF BABEL PRESS

HEXAGONAL UNIVERSE

A.K.A. CONCISE ALGORITHM
A.K.A. ONE MAN

A.K.A. PIERRE MENARD

figure 4. The first page of many, many books in the Library.

complementary angle, there are 253,200 possible first pages, and although
significantly smaller than the numbers we’ve been contemplating, it is yet
another enormous number. The chance of randomly selecting a book
with this particular first page is “only” 1 in 253,200, approximately 104,474,
which means, essentially, that it will never happen. For comparison’s
sake, the chance of a single ticket winning a lottery is better than 1 in
100,000,000 = 108. So finding such a book is equivalent to winning the
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lottery more than 559 times in a row. (In the equation below, each factor
of 108 signifies winning the lottery once.)

108 · 108 · 108 · · · · · 108 · 108︸ ︷︷ ︸
559 terms

= 108+8+8+···+8+8 = 10559·8 = 104,472

As a source of useful information for a catalogue entry, a title on the
spine of a book, such as The Plaster Cramp, is similarly moot, for there
must still be something like

Number of distinct books
Number of distinct spines

=
251,312,000

2519
= 251,312,000−19 = 251,311,981

distinct books with the exact same orthographic symbols on the spine.
Edition, publisher, city of publication, year of publication—all are

meaningless in this Library. The one sort of information we mentioned
that may possibly prove useful is that of a short description of the contents
of the book. We’ll take “short” to mean “half-page or less.” It’s much
more difficult to say what we mean by “description.” We’ll take it to
mean “something that significantly narrows the possible contents of the
book.” For example, “The book is utter gibberish, completely random
nonsense,” doesn’t significantly narrow the possible contents of the book.
(We are aware that this definition is problematic.)

Any book published in the last 500 years likely has a short, reasonably
limiting description. A book whose contents consist of the letters MCV
repeated over and over evidently has a short description. A book whose
entire contents are similar to the 80-symbol line

unmenneo .ernreiuhr.naper,utuytgn or fgioe,no,e,dn .roih senoi.,erg n cprih npp

almost certainly doesn’t have a short description. Or does it? A fascinating
area of study in the field of information theory concerns the difficulty of
deciding whether or not a line such as the one above has some sort of
algorithmic description that is shorter than the line itself. Borges seems
to have an intimation of this when he writes “There is no combination
of characters one can make—dhcmrlchtdj, for example—that the divine
Library has not foreseen and that in one or more of its secret tongues does
not hide a terrible significance.” Perhaps “hr,ns llrteee” is a more concise
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description of the line, or perhaps a succinct translation into English is
“Call me Ishmael.”

It does no good to excerpt a passage as a short description; titanic
numbers of books in the Library will contain the same passage. In
an important sense, then, for all languages currently known by human
beings, for the cataclysmic majority of books in the Library, the only
possible description of the book is the book itself. This, in turn, leads to a
lovely, inescapable, unimagined conclusion:

The Library is its own catalogue.

S

Let’s restrict the investigation to a slightly more agreeable collection of
books: all those whose entire contents cohere and are recognizably in
English, and whose first page contains precisely a short title and a half-
page description, both of which accurately reflect the contents. Any rule
of selection will have problems. Some associated with this one are: What
does it mean to “cohere”? Would a collection of essays on different topics
constitute a coherent work? Would sections of James Joyce’s infamous
novel Finnegans Wake register as “recognizably English”? What if the book
contains a non-English word, such as “ficciones”? What if the title, as in
the case of Ulysses, is more allusive than descriptive? Can any description
“accurately reflect” the contents of a book? Regretfully, we’ll ignore these
and other legitimate, interesting concerns.

For example, suppose the first page of a volume of the Library began
with the following description, modified slightly from the back cover
of the 2002 Routledge Press edition of Wittgenstein’s Tractatus Logico-
Philosophicus.

Tractatus Logico-Philosophicus
by Ludwig Wittgenstein

Perhaps the most important work of
philosophy written in the twentieth
century, Tractatus Logico-Philosophicus
was the only philosophical work that
Ludwig Wittgenstein published during his
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lifetime. Written in short, carefully
numbered paragraphs of extreme
brilliance, it captured the imagination of
a generation of philosophers. For
Wittgenstein, logic was something we use
to conquer a reality which is in itself
both elusive and unobtainable. He
famously summarized the book in the
following words, “What can be said at all
can be said clearly, and what we cannot
talk about we must pass over in silence.”

If next came the precise contents of the book, including Bertrand Rus-
sell’s introduction, followed by the appropriate number of pages consisting
of nothing but blanks, then that Library volume would be included in the
collection. We are also willing to include books longer than 410 pages, so
long as the title page includes reference to an appropriate volume number.
This allows, among other things, for the inclusion of this Catalogue of
Books in English into the putative catalogue we are trying to define,
which we may as well call Books in English.

This amenable collection of books is designed to enable Books in
English to include a title and short accurate description of the contents.
This nearly accomplishes the first half of the task of a catalogue; although
the books aren’t uniquely specified, the scope of possibility is greatly
constricted. However, the other half of a catalogue, that of specifying
a location, is also fraught with difficulties.

First, and most strongly emphasized by Borges, is the apparent lack
of organization in the distribution of books. It is possible that there is an
overarching pattern, but even if there is, it would be impossible to deduce
it from local information. The librarian’s “elegant hope” that the Library
is (truly) infinite and periodic would provide a godlike observer with
a kind of an order for each book; every particular book would have an
infinite number of exact copies—unimaginably distant from each other—
and these infinite copies would constitute a set of regularly spaced three-
dimensional lattice points. But this pattern does not serve our needs.

Finite or infinite, the problem of identifying individual hexagons of
the Library is insurmountable. If the Library is a 3-sphere or any of
the other spaces described in the chapter “Topology and Cosmology,”
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the number of hexagons is finite. However, since each hexagon holds
640 books, which is approximately 252.007 books, more than 251,311,997

(approximately 101,834,095) hexagons are required to hold all the Library’s
books. This means that if one were to attempt to write out a number for
each hexagon in our familiar base-10 notation, it would take 1,834,095
digits. Now each book in the Library has exactly 1,312,000 slots to fill,
and, moreover, the orthographic symbols contain no (recognizable) digits.
Writing a number out in words usually uses many more precious slots; for
example,

[one million, eight hundred thirty four thousand, and ninety
five] versus 1,834,095.

The bracketed expression takes 63 spaces, while the second needs only
nine. For almost every hexagon in the Library, a volume of a hypothetical
Books in English catalogue could not actually contain the corresponding
hexagon number where a book is shelved.

Trying to circumvent this problem, one may observe that many num-
bers have shorter expressions, such as 24,781, and legitimately wonder if
every integer might have a remarkably condensed form. An insuperable
problem is that there are many such condensed expressions, including the
one above, that need a computer to calculate. More disturbing, though,
is an example of a condensed verbal description of a “small” number—
only 100 digits—that even we, using networked supercomputers, would
be unable to find:

The median of the prime numbers expressible in 100 digits.

Thus, even if the catalogue entry for the Tractatus Logico-Philosophicus listed
the location as

Hexagon: the median of the prime numbers expressible in one
hundred digits.

Shelf: four.
Position: seventeen.

the information is as useless to us as it is to a librarian. (See the Math
Aftermath “Numb and Number (Theory)” for more discussion about
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prime numbers and, in particular, why we are unable to determine the
median of the prime numbers expressible in 100 digits.)

Usually, outside of computer science, we use base 10 to represent the
positive integers, meaning we use the 10 symbols {0, 1, 2, 3, 4, 5, 6, 7,
8, 9} to label numbers. In these circumstances, though, one might try
using a higher base than 10 for the integers, such as base 25, to number
the hexagons. There are two problems associated with this: first, it would
still take all but two slots of a book to list a hexagon number, which
suffices to invalidate the usefulness. Second, since each book contains
only 25 orthographic symbols, each such symbol would have to stand
for a digit. So, if one were to write out the hexagon number in base-25
digits, it would usually look like complete gibberish. (In fact, it also leads
to an unpleasant, yet valid, interpretation of the Library: it is the complete
listing of all base-25 numbers comprised of exactly 1,312,000 digits.) At
any rate, such a book would not be “recognizably English”; thus it would
not itself be listed in Books in English.

What if, like Ireneo Funes, from Borges’ celebrated short story “Funes
the Memorious,” we resolved to work in base 24,000? It would do no
good: in the story, for each number up to 24,000 Funes created his own
signifier, for example, names such as Brimstone, Clubs, and The Whale.
In the Library, we are stuck with 25 orthographic symbols. Instead of
combining 10 digits in various ways to fill five places to make a number
between 1 and 24,000, we would need to combine the 25 symbols
in a minimum of four places to distinguish 24,000 separate numbers,
because

254 = 390,625

while

253 = 15,625

which doesn’t provide enough distinct signifiers to take us up to base
24,000. Anyway, not only wouldn’t this convention save much space, it
also leads back to the previous dilemma: writing out the names of the
numbers will result in waterfalls of gibberish.

Finally, a potential catalogue entry might take a different tack. It might
give coordinates, such as, “Go up ninety-seven floors, move diagonally
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left four thousand hexagons, and then move diagonally right another two
hundred and twenty.” Although this might, at first blush, seem appealing,
the same sorts of problems arise, for most hexagons are unimaginably
far away. The example provided above works simply because the num-
bers involved—97, 4,000, and 220—are so miniscule, so accessible. The
Library is neither.

The Library is its own catalogue. Any other catalogue is unthinkable.



Math Aftermath: Numb and
Number (Theory)

A metaphysician is one who, when you remark that twice two makes four,
demands to know what you mean by twice, what by two, what by makes,
and what by four. For asking such questions metaphysicians are supported in
oriental luxury in the universities, and respected as educated and intelligent
men.

—H. L. Mencken, A Mencken Chrestomathy

Below are two outgrowths from the sprawling yet spare field of number
theory; together they form a pair of relatively straightforward mathemat-
ical confections. Both revolve around using prime numbers decisively to
reach interesting conclusions.

Consider the 251,312,000 distinct volumes in the Library: a simple
rethinking of this number will produce a result surely unimagined by
Borges. Now, as we all know, the number 25 factors into 5·5, so

251,312,000 = 25 · 25 · 25 · · · · · 25︸ ︷︷ ︸
1,312,000 terms

= (5 · 5) · (5 · 5) · (5 · 5) · · · · · (5 · 5)︸ ︷︷ ︸
2·(1,312,000) = 2,624,000 terms

= 52,624,000.

A prime number is a positive integer greater than one that is divisible only
by itself and by one. The unique factorization theorem, proved by Euclid
in The Elements, says that every positive integer is decomposable into
exactly one product of primes, each of which is raised to a power greater
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than or equal to one. For example, we all know that 100 = 10 · 10,
and it’s also true that 100 = 4 · 25. So, what is 100 equal to, 10 · 10 or
4 · 25? Of course you’re laughing at us, because 100 is obviously equal to
both products. Neither of these answers, though, is written exactly as a
product of primes, in which each prime is raised to a power greater than
or equal to one. Based on the two factorizations—10 · 10 and 4 · 25—it’s
easy to see that

100 = 10 · 10 = (2 · 5) · (2 · 5) = (2 · 2) · (5 · 5) = (22) · (52)

and

100 = 4 · 25 = (2 · 2) · (5 · 5) = (22) · (52).

Because 100 is so familiar, it’s probably not surprising to you that both of
the initial factorizations lead to the unique one. And perhaps it is equally
intuitive that no matter how large an integer we begin with, no matter
how we might try, there will be only one way to factor it into powers of
primes. Still, it’s nice to know that Euclid showed that it must always be
true.

By the work above, 52,624,000 is a unique factorization of 251,312,000

into primes, each raised to a power greater than or equal to one. In this
case, plainly the number of distinct books uniquely decomposes to one
prime (5) raised to a power greater than one (2,624,000). It follows that
the only numbers that can divide 251,312,000 are powers of five. Now, as
is easily inferred from the story, each hexagon in the Library contains
640 books. The number 640 uniquely factors into 27· 5, and so the
number 640 does not divide 251,312,000, for

251,312,000

640
=

52,624,000

640
=

5 · 52,623,999

5 · 27
=

52,623,999

27
,

and none of the seven 2s in the denominator may divide any of the
millions of 5s in the numerator. This means that the books do not exactly
fill out all the hexagons, which entails that either the Library is not complete
(!!!), or that there is a special hexagon that is not full, or that at least one
hexagon is differently configured, or that at least one hexagon contains
exact copies of other books in the Library. We can’t imagine that Borges
considered this—or would have cared—when he assigned numbers to
the quantity of shelves on a wall or the number of books per shelf in the
Library.
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Also, it may seem easy to juggle and tweak the numbers of shelves
and books to make each hexagon hold, say, 625 = 54 books. After all,
as written in the story, each hexagon holds 640 books, and 625 is very
close to 640. But this is an opportunity to admire the power of Euclid’s
unique factorization theorem: if each of the four non-doorway walls has
the same number of shelves, and if each shelf holds the same number of
books, then each hexagon must hold

(4 walls) × (m shelves per wall) × (n books per shelf) = 4mn books.

The prime factors 22 = 4 will always be there; neither adjusting the
number of shelves per wall, nor the tally of books per shelf will budge
those 2s, which means that 4mn can never cleanly divide 251,312,000.

How, then, might we arrange matters so that the total number of
distinct volumes may be evenly distributed throughout the hexagons?
One possible solution is to expand the alphabet to 25 letters and, as Borges
did, include the space, the comma, and the period to round the total
up to 28 = (22) · 7 orthographic symbols. Then, if the other (admittedly
arbitrarily chosen) numbers for each book stay the same, there will be
281,312,000 distinct books.

Next, hire infinitely many cabinetmakers to rebuild the bookshelves
in the hexagons, so that each of the four walls holds four shelves, and each
shelf holds 49 books. Then a total of 4 · 4 · 49 = 784 = (24) · (72) books
furnish each hexagon, and since

281,312,000

784
=

(
22,624,000

) · (
71,312,000

)
(
24

) · (
72

)

=

(
24

) · (
22,623,996

) · (
72

) · (
71,311,998

)
(
24

) · (
72

)
=

(
22,623,996) · (

71,311,998) ,

after the renovation, the 281,312,000 books exactly fill (22,623,996)·
(71,311,998) hexagons.

S

For this last section, the aim is to explain concisely why we are currently,
and for the foreseeable future, unequal to the task of determining the
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median of the prime numbers expressible in 100 digits. The median of
the set of primes expressible in 100 digits is, in a sense, the “middle”
of all of those primes. To compute the median, arrange the numbers
sequentially from the smallest to the largest prime less than 10100 (which
is called one googol).

2, 3, 5, 7, . . . (about 1097 more primes) . . . , 9999 . . . 999︸ ︷︷ ︸
97 digits of nine

203.

Now, if there are an odd number of primes in the list, the median is the
absolute middle of the list. If there are an even number of primes in the
list, the median is the average of the two primes appearing in the middle
of the list. (The average of these two numbers is guaranteed to be an
integer, for the sum of two odd numbers is even, and we conclude the
calculation of the average by dividing by two.)

The only way to find the median would be, in one way or another,
to account for the complete list of prime numbers expressible in 100
digits. Including 0, there are exactly one googol numbers express-
ible in 100 digits. By the famous prime number theorem—which
we’ll outline in a moment—there are more than 1097 prime num-
bers smaller than 10100. This number may sound manageable, but 1097

is trillions of times larger than the number of subatomic particles in
our universe. There simply isn’t any imaginable way to list and keep
track of 1097 numbers, which precludes the possibility of finding the
median.1

The prime number theorem was first conjectured in various forms
by Euler and others beginning in the late eighteenth century and was
finally proved about a hundred years later in 1896 by Hadamard (and
independently that same year by Poussin). Part of the beauty of the prime
number theorem is that it provides an excellent estimate of how many
primes there are that are smaller than 10100 without explicitly naming a
single one!

The prime number theorem says that if (n) is equal to “the number
of primes less than or equal to n,” then as n grows very large,

(n) ≈ n
ln(n)

,

where ln(n) is the natural log function. (The natural log has the same
remarkable properties as the log function, log(n), that we looked at
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earlier, and indeed, after multiplication by a constant, they are the same
function.) We are interested in knowing approximately the number of
primes expressible in 100 digits, so we compute  (10100) for a good
estimate:


(
10100

)
≈ 10100

ln
(
10100

) =
10100

100 · ln (10)
=

1098

ln (10)
≈ 1098

2.3
≈ 1097.



three

Real Analysis
The Book of Sand

To see a World in a Grain of Sand
And a Heaven in a Wild Flower
Hold Infinity in the palm of your hand
And Eternity in an hour.

—William Blake, “Auguries of Innocence”

z R eal analys i s i s the branch of mathemat ic s

that explores, among other ideas, the nuances of the
arbitrarily small. Paradoxically, in this chapter, thinking about the very
small will prove decisive in understanding the very large: the Book that
embodies the entire Library.

Borges’ last insight regarding the Library is cloaked in a footnote
adorning the conclusion of the last sentence. The footnote reads:

Letizia Álvarez de Toledo has observed that the vast Library is
pointless; strictly speaking, all that is required is a single volume, of
the common size, printed in nine- or ten-point type, that would
consist of an infinite number of infinitely thin pages. (In the early
seventeenth century, Cavalieri said that every solid body is the
superposition of an infinite number of planes.) Using that silken
vademecum would not be easy: each apparent page would open
into other similar pages; the inconceivable middle page would
have no “back.”

Others have independently noticed that Borges continued to play with
the idea of such a Book in his evocative short story “The Book of Sand.”1
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The mathematical analysis of a Book of Sand hinges on what is meant
by the phrase “infinitely thin pages.” Three different interpretations of
“infinitely thin” lead to three Books similar in spirit, but disparate in the
details. We’ll examine them in ascending order of exoticness.

First Interpretation

If we take “infinitely thin” to mean merely “thinner than any subatomic
particle,” there are several refreshing possibilities. First, there are (410) ·(
251,312,000

)
pages in the Library, a very large number, but still finite.

Thus, if every page is the same thickness, say

1

(410) · (
251,312,000

) th of an inch,

then the Book, sans cover, will be exactly one inch thick. Such a Book,
though, would defraud the anonymous librarian of his “elegant hope”
that the Library is repeated in its disorder, and also contravene the explicit
statement in the footnote that the book would consist of an infinite
number of pages. If, as above, the pages were all the same thickness, then
an infinite periodic repetition of all the books of the Library would force
the Book of Sand to be infinitely thick.

If we insist on each page having a definite thickness, and we equally
insist upon infinite repetitions for the pages of the Book, we must
therefore allow for ever-thinner pages. To make sense of such a Book,
we need to understand an idea from the theory of infinite sums.2 We’ll
begin this short journey by treading parallel to the tiny footfalls, echoing
loudly through the ages, of the Paradox of Zeno so beloved by Borges.

Suppose, starting at one end of a room, we were to walk halfway across
towards the opposite wall. After a brief pause, we walk half the distance
from the midpoint towards the opposite wall. After another brief pause,
we walk half the distance . . . (see figure 5).

In the coarse world we inhabit, we’ll stub our toes on the wall in
short order. In the idealized world of mathematics, we may always halve
the distance between one point and an endpoint. (Zeno’s and Parmenides’
paradoxes exploit this chasm between the world of our perceptions and
the mathematical vision of a line segment.)

For the purposes of this book, without offering a rigorous proof, note
that by adding up the lengths symbolized by the arcs, the information
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figure 5. Zeno walks across the room from 0 to 1.

encoded in figure 5 is equivalent to this equation:

1
2

+
1
4

+
1
8

+
1
16

+
1
32

+ · · · = 1.

This equation encapsulates a striking fact: by adding up infinitely many
segments, each smaller than the previous by one-half, a form of unity
is achieved. A gauge of the depth and profundity of this insight is that
for several centuries, most thinkers conceded that this hammered home
the final nail in the coffin for Zeno’s Paradox. (Nowadays, thinkers have
again complexified the picture, thereby casting doubt, raising questions,
and essentially resurrecting the dead.)

Following the example set by the equation, choose the first page to
be one-half of a standard page’s thickness, then the next page half that
thickness, the next half that thickness, and so on and so on. Then the
entire Book, infinitely periodically repetitive, will be exactly one standard
page thickness.

In the Math Aftermath following the chapter, we provide a bit more
background on this next calculation, which is estimating the thickness of
the 41st page. We conclude that the 41st page is

(
1
2

)
·
(

1
2

)
·
(

1
2

)
· · · · ·

(
1
2

)
︸ ︷︷ ︸

Cut the first page in half 40 times.

× (one standard page thickness)

=
(

1
2

)40

× (one standard page thickness)
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≈
(

1
1,099,511,627,776

)
·
(

1
1,000

meter
)

≈
(

1
1012

· 1

103

)
meters =

(
10−12) · (

10−3) meters

= 10−15 meters thick,

which is thinner than the diameter of a proton. Since each successive
page is one-half the thickness of the preceding page, all the rest of the
pages are also thinner than a proton. Of course, in this interpretation,
though almost every page is invisible to the naked eye, or even an electron
microscope, it is not the case that any page is actually “infinitely thin.”

Second Interpretation

Here, we take “infinitely thin” in the sense indicated by the reference
to Cavalieri’s principle in the footnote: the thickness of a Euclidean
plane. The thickness of a plane is the same as the length of a point,
which is tricky to define. Consider a point in the line. It is clear that
a Euclidean point is thinner than a line segment of any positive length.
It is somewhat disquieting, though, to say that a point has length 0; if
so, how does massing together sufficiently many 0-length entities create a
line of positive length? Doesn’t adding together 0s always produce another
0? How could an object be of length 0?

A subtle way of evading these traps was crafted at the beginning of
the twentieth century, primarily through the work of Henri Lebesgue,
whose theory is now a vast edifice with ramifications permeating much
of modern mathematics. Fortunately, we need only a small cornerstone of
the theory: the idea of a set of measure 0 contained in the real number line.

Recall that the real number line consists of all rational and irrational
numbers, each representing a point on the line, each also signifying the
distance from the origin to the point. It may be confusing that we are
explicitly identifying the “length of an interval” with a “number,” for
again, a real-world idea, that of length, is interpenetrating a mathematical
idealization. We inhabit this limbo for the rest of the chapter.

We need two definitions. A closed interval includes both endpoints of
an interval; as an example, the notation [0, 1] means “all numbers between
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p
figure 6. An arbitrarily small
interval may contain the point p .

0 and 1, inclusive.” Now, let S be any set contained in the real number
line. One says that S is a set of measure 0 if S can be contained in a union,
possibly infinite, of closed intervals whose lengths add up to an arbitrarily
small number. Several examples will help clarify this definition.

Example 1. A single point p in the real number line. Clearly p can be
contained in a closed interval of arbitrarily small length (figure 6). Thus
p is a set of measure 0. Note the fine distinction: we are not saying “the
point p is of length 0”; rather we are saying that p is a set whose measure
is 0. It turns out—and we’ll see an example soon—that there are sets of
measure 0 which are quite counterintuitive.

Example 2. Three points a , b , and c in the real number line. Let

a be contained in an interval of length 1/2,
b be contained in an interval of length 1/4, and
c be contained in an interval of length 1/8.

(It doesn’t matter if the intervals overlap.) Then the three points are
contained in a union of intervals whose sum-length is

1
2

+
1
4

+
1
8

=
7
8
.

Not arbitrarily small yet! But now, let

a be contained in an interval of length 1/4,
b be contained in an interval of length 1/8, and
c be contained in an interval of length 1/16.

Then, since each interval is half the length of its corresponding predeces-
sor, the sum is also halved.

1
4

+
1
8

+
1
16

=
7
16

.
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b ca

1/2
etc.
etc.

1/8     =     7/8++ 1/4

figure 7. Here, we sum ever-smaller triples of intervals. The sum
of each triple is half the length of the preceding triple’s sum.

If we play this game again, starting with an interval of length 1/8, we find
that

1
8

+
1
16

+
1
32

=
7
32

.

If we continue to put a , b , and c in intervals half of the lengths of
the previous go-round, the triple of intervals will also sum to half the
preceding length: first 7/64, then 7/128, and so on. By starting with a
sufficiently small interval, we ensure the sum of the three intervals is arbi-
trarily small—that is, the set S = {a ,b ,c } is a set of measure 0 (figure 7).

Example 3. It is a curious fact that it is difficult to show that the interval
of numbers between 1 and 4 is not of measure 0. Certainly our intuition
informs us that the minimum length of intervals necessary to cover [1, 4]
will sum to 3, but demonstrating it rigorously is a nontrivial exercise, well
beyond the scope of this book. See figure 8.

Back to the infinitely thin pages of the Book. We interpret “infinitely
thin” as meaning that each page has a thickness of measure 0. We also
assume, as we did at the end of the first interpretation, that within
this Tome, the books of the Library repeat over and over, enacting the

1 2 3 4

This interval should be—and is—of measure 3.

figure 8. The measure of the interval from 1 to 4.
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anonymous librarian’s “elegant hope” of a periodically repeating order.
We are therefore confronted with an intriguing problem:

There are infinitely many pages, each of which has thickness of measure
0. How thick is the Book?

The answer might run counter to your intuition:

The thickness of the Book is of measure 0.

In other words, if we looked at the Book sideways, we would not be
able to see it, let alone open it. How does this unexpected, unimagined,
unimaginable state of affairs arise? Once we think to look for it, it turns
out to be sitting there, almost as if it was waiting to be discovered.

The goal is to show that the thickness of the Book can be contained
in a collection of closed intervals which can be chosen so that the sum
of their lengths can be made arbitrarily small. If this can be done, then
by definition the Book is of measure 0. We’ll accomplish this by covering
the thickness of each page in ever-smaller intervals in a sneaky way that
exploits the infinite sum that embodied Zeno’s Paradox.

First, though, another counterintuitive point, followed by a technical
one. Although it’s conceivable that the Bookbinder bound the infinitely
many pages of the Book together in a straightforward order, it is also
possible that the pages of the Book wash up against themselves similar to
the rational numbers, meaning there is no more a “first” page of the Book
than there is a “first” positive rational number. If so, we simply choose
one of the 251,312,000 books to be the first, another to be the second,
and so on, until we have a complete list of the books and their pages.
Since the Book repeats, we are thus able to give numbers to its pages.3

So, let

the first page be contained in an interval of length 1/2,
the second page be contained in an interval of length 1/4,
the third page be contained in an interval of length 1/8,
and so on,
and so on.
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We saw in the first interpretation that

1
2

+
1
4

+
1
8

+
1
16

+
1
32

+ · · · = 1,

so the thickness of the Book can contained in an infinite union of intervals
which sum to 1. Here’s where the sneaky part comes in. Now, let

the first page be contained in an interval of length 1/4,
the second page be contained in an interval of length 1/8,
the third page be contained in an interval of length 1/16,
and so on,
and so on.

This time, the infinite union of intervals sums to

1
4

+
1
8

+
1
16

+
1
32

+
1
64

+ · · · =
1
2
.

This is seen by simply subtracting 1/2 from both sides of the previous
equation. Notice how we are exploiting an aspect of the idea of infinity:
we are throwing away a term from the left side of the equation, but
still have infinitely many terms to account for the infinite number of
pages.

If we start by letting the thickness of the first page be contained in an
interval of length 1/8, then the sum becomes:

1
8

+
1
16

+
1
32

+
1
64

+
1

128
+ · · · =

1
4
.

Clearly, by continuing to play this game of lopping the intervals in
half, we ensure that we may always find a union of intervals that contains
the thickness of the Book and sums to an arbitrarily small number. This
means that the thickness of the Book is of measure 0, an outcome surely
unimagined by Borges.

How it is possible to create a line segment, a set of positive measure,
out of points of measure 0? That is a long story for another day.
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Third Interpretation

Perhaps the elusive nature of the preceding interpretation is unsatisfying;
we never took a stand on how thick “infinitely thin” is; we merely
observed that it is of measure 0. For the third interpretation, we will
glimpse some of the basic elements of one of the most underutilized
mathematical theories of the twentieth century: nonstandard analysis. The
roots of the development of nonstandard analysis began with Leibniz,
one of the inventors of the calculus. Both Leibniz and Newton used
infinitely small quantities, infinitesimals (also known as fluxions), in their
early calculations. In his foreword to the revised edition of Abraham
Robinson’s seminal work, Non-standard Analysis, the logician Wilhelmus
Luxemburg notes that “Bishop Berkeley disdainfully referred to infinites-
imals as the ‘ghosts of departed quantities,”’ and that in response to this
and other attacks, “Leibniz proposed a program to conceive of a system
of numbers that would include infinitesimally small as well as infinitely
large numbers.”

Because of the difficulties inherent in beginning Leibniz’s bold pro-
gram, and for other historical reasons, his ideas lay fallow for almost 300
years. In 1961, with the publication of Non-standard Analysis, Robinson
rebutted Berkeley and fulfilled Leibniz’s dream. Using various tools of
logic and set theory developed in the late nineteenth and early twentieth
centuries, Robinson was able to create a consistent, logical model of a
number system that included infinitesimals.

It should be mentioned, with sincere respect, that adherents of non-
standard analysis possess a striking combination of mystic fervor and
matter-of-fact pragmatism about the topic. This may be because the
mainstream of mathematics has, at least for now, marginalized nonstandard
analysis due to its less intuitive constructions and technical complexities.
Bearing this in mind, here are selections, originally excerpted by Mark
McKinzie and Curtis Tuckey, from H. Jerome Keisler’s college textbook,
which approaches the calculus from the nonstandard viewpoint (emphases
added by present author).

In grade school and high school mathematics, the real number
system is constructed gradually in several stages. Beginning with
the positive integers, the systems of integers, rational numbers
and finally real numbers are built up . . .
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What is needed [for an understanding of the calculus] is
a sharp distinction between numbers which are small enough
to be neglected and numbers which aren’t. Actually, no real
number except zero is small enough to be neglected. To get
around this difficulty, we take the bold step of introducing a new kind of
number, which is infinitely small and yet not equal to zero . . .

The real line is a subset of the hyperreal line; that is, each real
number belongs to the set of hyperreal numbers. Surrounding
each real number r , we introduce a collection of hyperreal
numbers infinitely close to r . The hyperreal numbers infinitely
close to zero are called infinitesimals. The reciprocals of nonzero
infinitesimals are infinite hyperreal numbers. The collection of
all hyperreal numbers satisfies the same algebraic laws as the real
numbers . . .

We have no way of knowing what a line in physical space is
really like. It might be like the hyperreal line, the real line, or neither.
However, in applications of the calculus it is helpful to imagine
a line in physical space as a hyperreal line. The hyperreal line
is, like the real line, a useful mathematical model for a line in
physical space.

In nonstandard analysis, there are infinitely many hyperreal infinitesimals
clustered around 0, every one smaller than any positive real number. Each
signifies an infinitely small distance. We may simply assign any infinites-
imal we wish to each page of the Book.4 By the rules of nonstandard
analysis, we compute the thickness of the Book by adding together all of
the infinitesimals. For a summation such as this one, adding the infinite
number of infinitesimals produces yet another infinitesimal, so the Book
is, again, infinitely thin: never to be seen, never to be found, never to be
opened. This time, though, we may elegantly console ourselves that the
infinite thinness is a precisely calculable nonstandard thickness.

Regardless of which interpretation we assume, if the pages are ‘infinitely
thin,’ then by necessity the Book of Sand itself is infinitely thin.



Math Aftermath: Logarithms
Redux

Reason looks at necessity as the basis of the world; reason is able to turn chance
in your favor and use it. Only by having reason remain strong and unshakable
can we be called a god of the earth.

—Johann Wolfgang Von Goethe, Wilhelm Meister’s
Apprenticeship, bk. I, ch. 17

Recall that in the first Math Aftermath, we used logarithms to solve an
equation involving exponentials. This is another example, only slightly
more complicated, of using logarithms to solve an equation. Earlier in
this chapter, we claimed that if the Book of Sand started with a normal
page thickness, say one millimeter, 10−3 meters, and each successive page
was half the thickness of the preceding page, then the 41st page would
be thinner than a proton, which measures a little more than 10−15 meters
across. How did we find the number 40?

Let’s set it up as an equation. Each page is half the thickness of the
preceding page, so if we measure the nth page after the first page, it
will be the thickness of the first page cut in half n times. That is, it
will be

10−3

2n
meters across.
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Since the size of the proton is approximately 10−15, we set these two
terms equal to each other and then simplify the equation.

10−3

2n
= 10−15, which implies

10−3

10−15
= 2n;

therefore, 1012 = 2n.

Solving this last equation without logarithms would be very difficult. (In
fact, in 2004, powerful mathematical software running on my late-model
computer crashed the computer in a failed, naïve, brute-force attempt to
solve for such an n.) Since 1012 and 2n, although written differently, are
the same number, it should again be the case that any function applied to
both of them will output the same number. Thus,

log
(
1012) = log (2n) ,

which, by using the remarkable property of the logarithm, entails that

12 · log (10) = n · log (2) .

Dividing both sides by log(2) yields

12 · log (10)

log (2)
= n,

which can quickly be solved with a computer, a calculator, or—for
traditionalists—logarithm tables. When we do so, we find that n is about
equal to 39.9, so to ensure we get the result we want, we round upwards.
Thus, if we cut the initial page’s thickness in half 40 times, it will be the
case that the 41st page is thinner than a proton.



four

Topology and Cosmology
The Universe (which Others Call the Library)

A fact is the end or last issue of spirit. The visible creation is the terminus
or the circumference of the invisible world.

—Ralph Waldo Emerson, “Nature”

z T opology i s a branch of mathemat ic s that

explores properties and invariants of spaces, and for the
purposes of this book we consider a space to be a set of points unified by
a description. Cosmology is quite literally the study of our cosmos. If we
consider the Library to constitute a universe and the universe to be the
Library, it is not unreasonable to combine these notions and speculate as
to a conceivable topology of the Library that best reflects the anonymous
librarian’s received wisdom and secret hopes.

Early in the story—and many commentators have noted the connec-
tion between the italicized phrase and Borges’ essay “Pascal’s Sphere”—
Borges writes

Let it suffice for the moment that I repeat the classic dictum:
The Library is a sphere whose exact center is any hexagon and whose
circumference is unattainable.

The final sentences of the story invite us to reopen the question of the
topology of the Library:

I am perhaps misled by old age and fear, but I suspect that the
human species—the only human species—teeters at the verge of
extinction, yet that the Library—enlightened, solitary, infinite,
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perfectly unmoving, armed with precious volumes, pointless,
incorruptible, and secret—will endure.

I have just written the word “infinite.” I have not included
that adjective of out of mere rhetorical habit; I hereby state that
it is not illogical to think that the world is infinite. Those who
believe it to have limits hypothesize that in some remote place or
places the corridors and stairs and hexagons may, inconceivably,
end—which is absurd. And yet those who picture the world as
unlimited forget that the number of possible books is not. I will
be bold enough to suggest this solution to the ancient problem:
The Library is unlimited but periodic. If an eternal voyager should
journey it in any direction, he would find after untold centuries
that the same volumes are repeated in the same disorder—which,
repeated, becomes order: the Order. My solitude is cheered by
that elegant hope.

Collecting the properties of the classic dictum (CD) and the Librarian’s
solution (LS), we obtain the following list:

1. Spherical (CD)
2. Center can be anywhere—uniform symmetry (CD)
3. Circumference is unattainable. (CD)
4. No boundaries (LS)
5. Limitless (LS)
6. Periodic (LS)

Is there a space that embodies all six of these properties? If so, how can
we best envision it and grasp it with our intellect? We claim there is an
excellent candidate that encompasses these properties, if we are willing
to refine our interpretations just a smidge. In the Math Aftermath to this
chapter, we discuss two other compelling ways of configuring the Library
that each significantly expand our conceptions of the possible.

Let’s begin with the space most familiar to our intuitive geometric
sense: Euclidean three-dimensional space (henceforth, 3-space). It is a
space we think of as possessing volume, as having three axes of orientation
with ourselves as the central point; we may move forward or backwards,
we may move left or right, and we may move up or down. And, of course,
we may also move in combinations of these directions. Notice that from
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this description, there is no fixed preferred center point: we are our own
central points.

Indeed, one of Descartes’ deepest ideas was to specify a point—some
point, any point—in 3-space and call it the origin. Three axes intersecting
at the origin, typically called the x, y, and z axes, are set with each
axis at right angles to the other two. They abstract our innate, intuitive
orientation and, with the introduction of a unit length, which naturally
induces a numbering of the axes, give rise to a coordinatization of space.
Algebra can now conjoin geometry, creating analytic geometry, and later
spawn calculus.

But there are no distinguished points of any kind in Euclidean 3-space;
in fact, the view from any point is the same as from any other point. There
are no walls, no boundaries, and no limits. It seems at the end of the story
the librarian envisioned this kind of space, partitioned into hexagons,
filled with books, extending infinitely throughout the totality of 3-space.
The books’ shelving pattern repeats endlessly along each of the three axes,
much as a symmetric wallpaper pattern does in two dimensions. While
this conception of the Library satisfies points 2, 4, 5, and 6, it also induces
a vertiginous disorientation born of trying to imagine a thing extending
away forever. For example, if the Library goes down forever, what do the
hexagons rest on? More hexagons? Rather remarkably, the architectural,
model of the Library that we propose provides a satisfying answer to this
question.

A note regarding the gravity of the situation. If the universe and the
Library are synonymous, and if we make the reasonable assumption that
the universe is neither expanding nor contracting, it follows that the
natural gravitational field would be identically zero everywhere. Even
though there are unimaginable amounts of matter in the universe/Library,
its homogeneous distribution entails that the gravitational effect from any
one direction would be canceled out by precisely the same effect from
the opposite direction. Since the builders of a Library must be, at least
from our perspective, omnipotent, their talents surely must include the
ability of imposing a useful constant gravitational field on the Library.

Euclidean 3-space embodies some of the qualities of interest in our
quest to understand the large-scale structure of the Library. We need to
limn two more ideas, one mathematical, one mystical, before we can
describe the form of a Library that reconciles the characteristics of the
classic dictum and the Librarian’s solution.
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The mathematical idea is relatively recent—it comes from the early
part of the twentieth century. For the purposes of this book, we’ll say that
a manifold is a space that is locally Euclidean but that on a global scale may
be non-Euclidean. Perhaps the simplest possible example is that of a sphere,
or globe, or surface of a cantaloupe, or of the earth, balloon, soccer ball;
take your pick. Locally, assuming that we are so small we can’t detect the
curvature, each micropatch of a sphere is, in essence, a two-dimensional
Euclidean plane (2-space). One need think only of the steppes of Central
Asia, the corn belt of the United States, the Sahara desert, or any large,
calm body of water to engage vivid testimony on this point. Globally,
despite the essential flatness of each little patch, we find non-Euclidean
behavior: if we begin at a point, pick a direction, and continue moving
in that direction, we circumscribe the sphere and return to our starting
point. This can’t occur in 2-space, where we perforce travel forever in
one direction and can’t ever come close to a previously visited point.

Again, a manifold is locally Euclidean. If we start at any point in space,
look around and take a few steps in any direction, do we think we are in
Euclidean space? If the answer is yes, then we are in a manifold. If we con-
tinue walking, and some unusual phenomenon occurs, such as returning
to our starting point, then we realize we are in a nontrivial manifold; that
is, one with global non-Euclidean properties. Our universe, for example,
seems to be a manifold, although interesting questions arise at black holes.
Certainly one cannot imagine standing at a black hole and taking a step
in any direction! Researchers are trying to devise methods of determining
the global structure; a readable introduction to this area of research can be
found in Luminet et al.

The mystical idea is relatively ancient—I leave it to a Borgesian
intellect to trace its roots and agelong echoes. Let’s begin in a familiar
place, our own universe. If we talk about an object in our universe—
for example, a desk or chair—we view it as embedded in a larger space.
Consequently, we often use our relative coordinate system to refer to
objects, as when we say “It’s on my right,” or “Over there! Directly
behind you, to the left,” or “Scratch my back . . . lower . . . lower . . . to
the right . . . now up . . . that’s it!” Over the millennia, primarily as nav-
igation aids, we’ve settled upon somewhat less arbitrary reference points,
such as the North Star, the magnetic North Pole, and the true North
Pole. The point is, though, that these references, these origins, are all
within our universe. “Outside the universe” is a phrase beyond normal
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comprehension. Some theories place our universe in a larger matrix, such
as a superheated gas cloud containing an infinite number of inaccessible
universes, or in a higher-dimensional space, or in a multiplicitous welter
of bifurcating universes. However, these theories raise the question,

“What is outside of the larger universe?”

Really, now, though, “What is outside of the universe?” The answer is
no thing; nothing; non-space; indescribability; un-thing-ed-ness; Void
beyond vacuum: all these non-things are the “outside” of our universe.

These two ideas, the mathematical and the mystical, are woven
together in this question and its answer.

Where is the center of a sphere?

If the sphere is considered as an everyday object embedded in our
universe, the answer may take a form such as “at the intersection of two
diameters,” or, pointing at it dramatically, saying with particular emphasis,
“There! In the middle, in the interior!” See figure 9. If, though, we
consider the surface of the sphere as a manifold, as a space in itself and
of itself, then the question and answer are subtler. As in the case of our
universe, as if we were points residing in the sphere itself, there is no
legitimate referral to a point outside the universe of the surface of the
sphere. There is only the sphere; every thing else is no thing. Where is
the center of a sphere? Considered as a manifold, then, the answer is

Everywhere and nowhere.

figure 9. Where is the center of a
sphere?
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Every point has the property that locally, it looks like Euclidean space,
and regardless of the direction taken, consistently moving in any chosen
direction returns us to the starting point. No point is distinguished in any
way.

S

One more idea is necessary to provide a satisfying topology for the
Library. The example of a manifold we used was a two-dimensional
sphere (2-sphere). There are a number of ways to rigorously define a
2-sphere. Euclid might write something like, “Given a point p in 3-
space, a sphere with center p is the collection of all points a specified
uniform distance away from p .” An analytic geometric equation for the
standard unit sphere is x2 + y2 + z2 =1. (If you’re interested in seeing why
this equation specifies a sphere, please turn to the appendix “Dissecting
the 3-Sphere”.) Here, using words and pictures, we provide a topological
construction of a 2-sphere.

Start with a disk in the Euclidean plane and while preserving the
interior of the disk except for bending and stretching, crimp the entire
boundary circle up out of 2-space, and then contract the boundary to one
point. This point, the contraction of the boundary, becomes the north
pole and vanishes into the surface of the sphere created as the process is
completed (figure 10). An interesting point: the way we’ve described it,
and the way the picture shows this process, it seems as though a disk is
being modified over time. By contrast, though, one should simply say,
“Identify the boundary of the disk to a point.” Thus, in some sense, the
creation of the sphere is a timeless step that happens “all at once.”

figure 10. A disk curls up out of the Euclidean plane, while its interior
stretches and its boundary circle shrinks to a point. The result is a 2-sphere.
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The three-dimensional sphere (3-sphere) provoked many advances in
topology over the past century, and due to the recently solved Poincaré
conjecture it remains a vibrant research topic. The 3-sphere is a gen-
eralization of the 1-sphere—a circle—and the 2-sphere. Euclid might
write something such as, “Given a point p in four-dimensional Euclidean
space, a sphere with center p is the collection of all points a specified
uniform distance away from p .” An analytic geometric equation for the
standard unit 3-sphere is w2 + x2 + y2 + z2 =1. (Again, to see how this
equation captures “sphericality,” please consult the appendix “Dissecting
the 3-Sphere.”) An analogous topological construction for the 3-sphere is
difficult to envision, but by pushing the limits of our understanding, we
may learn much.

Take a solid ball—a baseball, or an apple, or a cherry, or a
cannonball—and, while leaving the interior of the ball uncompressed,
crimp the entire boundary sphere upwards, and then simply contract
the boundary sphere to one point (figure 11). That’s it. At least the
difficulty is easy to understand; for the construction of the 2-sphere, we
took a two-dimensional object, the disk, and had to bend it into the
third dimension before we could contract the boundary at all. Starting
with a solid ball in three dimensions, we must “bend” the ball into the
fourth dimension before we can contract the boundary (figure 12). At this
juncture, the mathematics becomes unimaginable; the best to be hoped
for is that by meditating on the lower-dimensional examples accessible to
our imagination, we may be able to conjure the memory of the trace of a
once-sensed intuition. Still, by proceeding with analogies to the 2-sphere,
we’ll use a trio of methods to begin to visualize the 3-sphere.

If we take a two-dimensional Euclidean slice of a 2-sphere, the result-
ing geometric object is either a point—at the north and south poles—or a

?!?
figure 11. Trying to shrink the spherical boundary of
a solid ball to a point without shrinking the whole
ball. It can’t be done in 3-space.
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?!?
figure 12. The analogous problem for a disk. Confined to 2-space, the
boundary of the disk can’t be contracted to a point without shrinking the
entire disk.

1-sphere (figure 13). Using a mild updating of an idea from Flatland, if we
make a movie of the slice moving from the north pole to the south pole, a
viewer would see a point that grows into a unit circle, which then shrinks
back down to a point (figure 14, left). In a similar fashion, if we take a
three-dimensional Euclidean slice of a 3-sphere, the resulting geometric
object is either a point—at the “top” or “bottom”—or a 2-sphere. If we
make a movie of the slice moving from the top to the bottom, the viewer
would see a point that grows into a unit sphere, which then shrinks back
down to a point (figure 14, right). (Again, for those who find equations
more convincing than pictures, we provide an analytical proof of this in
the appendix “Dissecting the 3-Sphere.”)

Expanding on this idea, suppose we were forced to squish the
2-sphere, whose natural home is in 3-space, down into 2-space. Since
we just conceived of the 2-sphere as a collection of stacked circles com-
bined with two poles, we may envision a flattened planar depiction as a

North Pole

Circle

South Pole

figure 13. Taking slices of a 2-sphere by Euclidean planes.
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t  =  1

t  =  2

t  =  3

t  =  4

t  =  5

t  =  6

Time-lapse film of a 
Euclidean plane passing 
through a 2-sphere.

Time-lapse film of a 
Euclidean 3-space passing 
through a 3-sphere.

figure 14. A film of planar slices of the 2-sphere and volume
slices of the 3-sphere.

collection of intersecting circles with two points signifying the north and
south poles (figure 15). The related problem, the one that’s been tasking
us, is how to represent the 3-sphere down-sized into 3-space. If we think
of the 3-sphere as “stacked” 2-spheres—in the same sense that a 2-sphere
is stacked 1-spheres—the analogous 3-space representation is a collection
of intersecting 2-spheres (figure 16).

For the third way of envisioning the 3-sphere, the lower-dimensional
correlate is to take a section of the 2-sphere and flatten it out into the
Euclidean plane. If our section includes, say, the south pole, the flattened
section is a disk. If our section doesn’t include either pole, the flattened
section is an annulus, which is a ring, a thickened circle. Note that the
equator of the sphere (the dotted circle in figure 17) is flattened to
the central circle of the annulus. The circle-slices above the equator on
the sphere are smaller than the equator, but when flattened become larger
than the central circle of the annulus. Similarly, the circle-slices below
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figure 15. The circles and two points of a 2-sphere flattened into the
plane.

figure 16. The “flattening” of a 3-sphere
into 3-space is analogously represented by
intersecting 2-spheres combined with two
points.

figure 17. Flattened sections of the 2-sphere are either disks or annular rings.
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Solid ball
(cut in half)

Solid ball
(cut in half)Thickened 

spherical shell
(cut in half)

figure 18. “Flattened” sections of the 3-sphere in
3-space are either solid balls or thick spherical shells.

the equator flatten to even smaller circles in the annulus than they were
in the sphere. This process of dimensional flattening distorts the object;
necessarily, information is lost.

If we take sections of the 3-sphere, we must consider how to “flatten
out” the resulting object into 3-space. If our section includes, for example,
the bottom of the 3-sphere, the flattened section is, by analogy, a solid ball.
If the section of the 3-sphere doesn’t include the north or south poles,
the “flattened” section is a solid ball with a smaller ball removed from
the center—a pitless olive, or a tennis ball, or an empty walnut shell, or a
thickened spherical shell. In figure 18, perhaps the most counterintuitive
aspect is the means by which the middle collection of 2-spheres collates
to a thickened spherical shell. The centralmost, the largest 2-sphere, is
flattened to itself. The smaller spheres directly to the left, say, of the central
sphere thicken it on the inside. The smaller spheres directly to the right
of the central sphere are distorted by the flattening into larger spheres
that thicken the exterior of the central sphere. Again, unfortunately,
the process entails that we must lose information about the size of the
spheres.

S
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All the girders and struts of the framework are now in place to finish
assembling the topology and cosmology of the Library. The 3-sphere is a
three-dimensional manifold; at every point, if we inhabited the 3-sphere,
we would say—locally—that space was Euclidean. If we walked what
we perceived to be a straight line in any direction, we would—possibly
after countless ages—return to our starting point; the 3-sphere can be
construed as periodic. There are no boundaries, no walls to bump into; the
3-sphere is limitless. Moreover, in his luminous story “The Garden of
Forking Paths,” Borges has the sympathetic sinologist Stephen Albert say,
“. . . I had wondered how a book could be infinite. The only way I could
surmise was that it be a cyclical, or circular, volume, a volume whose last
page would be identical to the first, so that one might go on indefinitely.”
Even though Albert rejects this line of reasoning for “The Garden of
Forking Paths,” this quote, coupled with Borges’ well-known interest in
Nietzsche’s idea of eternal recurrence, indicates that Borges was willing to
consider cyclic or recurrent structures as tokens of, or synonymous with,
infinity.

Considered as a three-dimensional manifold, the center of the 3-sphere
is everywhere and nowhere. Furthermore, if the 3-sphere is so large that,
regardless of our transport, we could never come close to circumnavigat-
ing it, it would not be illegitimate to say that the circumference is unattain-
able. Finally, this answers the question concerning what the hexagons “rest
on.” By forming great circles—circles which are essentially equators of a
sphere—the hexagons all rest upon each other and ultimately themselves,
and thus there is no need for an impossible “external” foundation for the
Library.1

Now, though, it’s conceivable that generalizing from a 2-sphere might
generate some disquietude: on a 2-sphere, any two distinct great circles
intersect at exactly two points (figure 19). It is not unreasonable to worry

These two great circles
intersect here and on the
back side of the sphere.

figure 19. A possible source of unease.
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that any two distinct great circles on the 3-sphere would also of necessity
intersect in at least two points. This might entail that all the air shafts and
all the spiral staircases would converge, say, at the north and south poles
of the 3-sphere, causing a traffic jam of epic proportions. Fortunately,
this intuitively plausible scenario doesn’t happen. Perhaps the easiest way
to begin to get a handle on why this isn’t a problem is to grasp that a
circle is only one dimension smaller than a 2-sphere. Consequently, it has
special properties of “dividing” space locally into two pieces; certainly a
great circle divides a 2-sphere into two hemispheres. However, a circle
is two dimensions smaller than a 3-sphere and hence has no such special
division property in the 3-sphere. Imagine a circle floating in the center
of the room—space flows through it and around it with aplomb.

If the Library is the universe, and the universe is a 3-sphere, then the
Library is a sphere whose exact center is any hexagon and whose circumference
is unattainable; moreover, it is limitless and periodic. That is, the 3-spherical
Library satisfies both the classic dictum and the librarian’s cherished hope.



Math Aftermath: Flat Out
Disoriented

The reverse side also has a reverse side.
—Japanese proverb

Donuts. Is there anything they can’t do?
—Homer Simpson, The Simpsons

The enemy of my enemy is my friend.
—Ancient proverb

This Math Aftermath comes with a travel advisory of sorts for the
potential explorer. In some sense—at least, in the author’s sense—the
material herein represents the mathematical zenith of the book: it’s an
extended journey into some other three-dimensional manifolds. While
we wish to encourage the intrepid reader to forge ahead, we issue the
advisory just in case you experience the Aftermath as an overwhelming
deluge of math. If so, our advice is to jump to the next chapter until the
feeling subsides. And with that, on to the math.

If we are willing to forego one-third of the Librarian’s classic dictum
that the Library is a sphere whose exact center is any hexagon and whose
circumference is unattainable by yielding on the spherical nature of space,
then there are two candidates for the large-scale shape of the Library, the
3-torus and the 3-Klein bottle, both worthy of our time and attention.2

The two are intimately related, for the second can be thought of as the
twisted, disoriented reassemblage of the first.

We’ll proceed as we did earlier in the chapter: first, we’ll gain an
understanding of a two-dimensional object that lives in three dimen-
sions, then we’ll use that knowledge-base to visualize a three-dimensional
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manifold that lives in higher dimensions. This time, though, there will
also be an intermediate step of reconfiguring our mind’s eye to allow the
hope of visualizing a two-dimensional object that lives most naturally in
four dimensions. Finally, we’ll briefly discuss the attributes of a Library
modeled on either a 3-torus or 3-Klein bottle.

From the Plane to the Torus

We start with a familiar object, the everyday square, and then show that by
“gluing” its edges together, various two-dimensional manifolds emerge.
(Note that the square itself is NOT a manifold. Our rule is that it must
be locally Euclidean, which we are taking to mean that if we stand at any
point and take a few steps in any direction, we perceive ourselves as being
in a Euclidean space. However, if we start at the edge of the square, we
can’t walk over the edge and still imagine ourselves in 2-space, for 2-space
has no boundaries.)

Begin by marking the left and right sides with arrows pointing down,
then continue by marking the top and bottom sides with double arrows
pointing towards the right (figure 20). Now, identify the top and the
bottom edges with each other, so that the arrows continue to point in the
same direction. The mathematical sense of identify entails that the sides
truly unify; it is as if they were never separate entities. By contrast, the best
physical approximations are unfortunately coarse; one must glue, tape, or
solder the edges together. Manifestly, after the mathematical identification
the square has become a cylinder (figure 21).

Now identify the ends of the cylinder so that the arrows continue
to revolve in the same direction—in 3-space, this is accomplished by
bending the cylinder around so that the ends come together. When
this identification is complete, the cylinder has transformed into a torus:
the surface of a donut, the surface of a bagel—or, as topologists like to

figure 20. A square with edges marked by
orienting arrows.
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figure 21. Identifying the top and bottom edges of the square.

point out, the surface of a coffee mug (figure 22).3 (A statistician, Morris
DeGroot, once jokingly remarked to me the literal truth that topologists
don’t know their asses from a hole in the ground.) This nifty sequence
leads to the expression that the torus is just a square with the edges identified
to preserve orientation. The torus is a 2-manifold; every point in it locally
looks like the Euclidean plane. It has no boundary edges or walls, and if
we think of it as a space into and of itself, like Euclidean space and the
3-sphere, the center is both everywhere and nowhere. The torus has an
additional property which is quite extraordinary: it is flat, which means
it can be embedded in Euclidean space in such a way that a bug walking
between any two points on the torus could find a path whose distance is
precisely the same as the straight-line distance between those two points
on the square.

This should sound implausible; after all, the torus looks quite bent
and the distance on the outer edge looks much longer than that on the
inner edge. In fact, this is true; for the purposes of the illustrations and for
boosting our intuition, we bent the cylinder until the ends met. We were
purposely ambiguous and merely wrote “can be embedded in Euclidean
space,” several sentences back, rather than adding the key phrase: It must
be four-dimensional Euclidean space. However, it’s easy to see that the
cylinder is truly flat in the geometric sense: Mark any two points on a

figure 22. Identifying the left and right edges, forming a torus.
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cylinder. Now let the cylinder unroll so that it is once again a square.
Connect the dots in the square by a straight line. Now reroll the square
into a cylinder. Voilà! Staying in the surface of the cylinder, the shortest
distance between two points is, at most, the same as the distance between
the two points in the unidentified square. (Why “at most”? Because there
may well be a path crossing the identified edges of the cylinder that is even
shorter than the straight-line path inherited from the square; regardless,
by the unrolling/rerolling, we are guaranteed to achieve, at worst, the
same distance on the torus as in the square.)

From the Plane to the Klein Bottle

The twisted, nonorientable reassemblage of the torus is called the Klein
bottle. We form it by starting, once again, with a square. Again, mark
double arrows on the top and bottom sides so that the arrows point in the
same direction. This time, though, we place the arrows on the left and
right sides so that they point in opposite directions (figure 23). Again, we
identify the top and bottom sides with the arrows pointing in the same
direction and thereby obtain a cylinder. This time, however, when we try
to identify the ends of the cylinder, there is an insurmountable problem
in 3-space. No matter how we twist or turn the cylinder around, there is
no way to put the ends together so that the arrows are revolving in the
same direction (figure 24). Although the picture looks bleak—impossible,
in fact—the last twisted cylinder actually provides a ray of hope. If we
rotate the orienting arrow counterclockwise around over the top of the
bottom end of the cylinder, it’s still pointing in the correct direction, and
we obtain the mildly cheering picture shown in figure 25. Twisted around
like this, one opening above the other, the orientations of the end-pieces
match up: they are both counterclockwise.

These orienting arrows are
now pointing in opposite 
directions.

figure 23. The orienting arrows for a Klein bottle.
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The cylinder’s ends can’t
be joined in 3-space, because the 
orienting arrows are revolving
in opposite directions.

figure 24. After identifying the top and bottom of the square, forming a
cylinder, problems ensue when trying to identify the left and right edges.

Because of the impossibility of aligning the cylinder ends, the Klein
bottle cannot live in three dimensions; it requires at least four. A way of
representing it in three dimensions is depicted in figure 26, but it requires
a self-intersection. You can actually do this nicely by starting with a large
enough piece of paper, marking the sides, taping the top and bottom
edges together to make a cylinder, and then cutting a hole in the side
to pass one end of the cylinder through. This is an excellent way to see
how to allow the orienting arrows to point in the same direction. Perhaps
this analogy will help explain why allowing the Klein bottle to be in four
dimensions effaces the self-intersection. Suppose we confined ourselves
to the two-dimensional Euclidean plane and were interested in joining
a point inside a circle to a point outside the circle by a line (figure 27).
Regardless of devious twists, turns, or serpentine path, it’s pretty obvious
that any curve joining the two points must intersect the circle somewhere.

figure 25. After a counterclockwise slide, the
bottom arrow remains consistent with its original

orientation.
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Cut a hole 
in the surface
of the cylinder.

          Insert the twisted end
                  through the hole
                  into the cylinder.

Identify
the ends.

figure 26. A two-dimensional depiction of a three-dimensional action
that represents a 2-manifold which lives in four dimensions.

The only possible way to connect the points without intersecting the
circle is to venture into the third dimension, pulling a path out of the
plane (figure 28). Similarly, one may eliminate the self-intersection of
the Klein bottle by simply pulling the offending part of the cylinder into
the fourth dimension.

The “twisted” portion of the initial description of the Klein bottle
comes from the fact that one could change the order of the construction
by first identifying the left and right sides of the square before identifying
the top and bottom. To identify the left and right sides, one must twist the
square—and in so doing, create a Möbius band. If we did that, though,
at this juncture it is very difficult to visualize how to glue the top and

figure 27 (left). In the plane, any line joining the two
points must intersect the circle.

figure 28 (right). Arcing into the third dimension allows
the points to be joined without intersecting the circle.
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bottom together to make the Klein bottle, because the top and bottom
have been merged into one entity, a circle seemingly doubled on itself.

The “disoriented” portion stems from technical considerations and is
manifest in two related, but distinct, ways. We’ll cover them both below.

Outside Insights

Suppose we decide to walk a counterclockwise path on what appears to
be the outside of the Klein bottle. In figure 29, the black arrow pointing
out of the surface into space will represent our position as we start to
walk, feet on the Klein bottle, head in the clouds.

Now some weighty philosophic problems naturally arise from even
this innocent beginning. Euclid’s plane and all 2-manifolds, including the
Klein bottle, are “infinitely thin,” much like the pages of the Book of
Sand. Is the Euclidean plane therefore transparent? Does the plane, or
any 2-manifold, possess a distinct “top” and “bottom”? (Borges makes
playful use of these questions in his story “The Disk.”) The mathematical
perspective is that a path in the Euclidean plane or on a 2-manifold is

Start and end here.
Move counterclockwise
along the path, starting
with the black arrows,
which are pointing 
“outside” the Klein bottle.

Here’s the tricky part:  the 
arrows and the path change 
shade to signify that they are 
on the “interior” pointing 
“inside” the hole of the Klein 
bottle instead of pointing “out.”

figure 29. An arrow pointing “outwards” journeys around the
Klein bottle and returns to the starting spot pointing “inwards.”
The path started “outside” the cylinder, which twists in four
dimensions so the “outside” becomes the “inside.”
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simultaneously visible from both sides, and as such, it might be useful
to imagine the Euclidean plane as a thin and supple sheet of transparent
plastic. Then, any line painted on, for example, the top of the plastic is
essentially visually indistinguishable from its image as seen through the
plastic from below.

As we begin our walk along the surface, our feet naturally remain
on the surface, while our heads naturally are “outside” in 3-space. Next,
follow the path to where the two ends of the cylinder are identified.
(This looks like the “hole” at the front of the Klein bottle in figure 26.)
Note that as we enter the “hole”, the arrow and the path both are faded
to suggest that we are now inside the Klein bottle, and that our heads
are now pointing “inside” rather than “outside.” Keep moving “inside”
the Klein bottle through the self-intersection—which isn’t really there—
until we’ve circled around to our starting point (figure 29). The arrow
representing us was initially pointing “out” and now it is pointing “in.”
The Klein bottle, which has neither holes nor boundaries, also has no
inside or outside in the sense that we intuitively understand these terms—
a disorienting revelation indeed.

A faintly analogous situation occurs with the familiar circle. In the
plane, there’s a distinct inside and outside—look again at figure 27. As
discussed earlier in the chapter, in 3-space the circle has nothing easily
definable as an “inside” or an “outside.” It certainly does not cut 3-
space into two eternally separate pieces, as does, for example, a 2-sphere.
The correspondence between the Klein bottle’s and the circle’s lack of
an inside and an outside hinges on dimensionality. A circle is a one-
dimensional object that can live in two dimensions. If the circle is in
the plane, in 2-space, then the “dimensional difference”—technically, the
codimension—is equal to one:

2 − 1 = dimension(2-space) − dimension(circle) = 1.

On the other hand, if the circle is in 3-space, the codimension is equal to
two:

3 − 1 = dimension(3-space) − dimension(circle) = 2.

Similarly, if the Klein bottle, a two-dimensional object, is in 4-space, the
codimension is once again equal to two. A codimension greater than one
implies that the object can’t separate the space into two distinct pieces;
thus, there can be no inside or outside.
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Summarizing, the Klein bottle is an example of a one-sided 2-manifold
with no boundary. (By contrast, the Möbius band, another delightfully
disorienting object, has a boundary, an edge.) All the boundaryless
2-manifolds familiar to us from our sensual life in 3-space have an inside
and an outside—think of a sphere, a torus, the surface of a pretzel, or
the surface of any familiar object. They all cut space into two distinct
pieces.

The Klein bottle does not separate space—it has one side only, and
there is no way of distinguishing between the inside and the outside.
Moreover, in four-dimensional Euclidean space, the Klein bottle is geo-
metrically flat for the same reasons as the torus: pick any two points on
it, reverse the identifications back to a square, then draw the straight
line that connects the two points. An unimaginable construct, to say the
least.

Inside Outsights

There is another disorientation involving the Klein bottle. For this one,
we imagine, taking a cue from Flatland, that we live a two-dimensional
existence wholly contained within the surface of the Klein bottle. Outside and
inside are meaningless words to us: the Klein bottle is our entire universe.
Befitting our new planar existence, let us take a new form, that of a flag
rather than an arrow. The flag that we are curves and bends with the Klein
bottle as we move around; again, it is—we are—wholly contained within
the universe that is the Klein bottle.

Again, this time the black flag is part of the surface of the Klein
bottle, not perpendicular to the surface like the arrows in the previous
illustration. See figure 30. Now move the flag counterclockwise along a
path that exploits the one-sided nature of the Klein bottle, the same path
as in the previous section. As in figure 29, we change the shade of both the
path and the flag as they proceed from the “outside” of the Klein bottle
through the “hole” to the “inside.” Note that throughout our journey,
the black flag points in the direction of motion.

Observe that although the flag begins its journey with the pole
pointing in one direction on the surface of the Klein bottle, after
it has slid around to the starting point the pole, still contained in
the universe that is the Klein bottle, is now pointing in the other
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Start and end here. Move 
counterclockwise along 
the path, tracing the progress 
of the black flag. Notice it is
pointing in the direction of
the flag’s motion.

Here’s the tricky part: the 
flags and the path change 
from black to signify that 
they are on the “inside” of 
the Klein bottle.

figure 30. A black flag returns as if reflected in a mirror.

direction. Perhaps, jaded by the one-sided oddity of the Klein bot-
tle, this isn’t a big surprise—after all, it is easy to imagine slithering
around on the floor and ending up with our feet located at their initial
spot and with our head pointed in the opposite direction than at the
start.

More disorienting, though, the black flag has come back a mirror reflection
of itself. There is no obvious intuitive analogue for us. Any journey you
take, transformative though it may be, will not result in your coming
back as a mirror-reflected image of yourself. You may, for example, feel
a shadow of your former self, or half the person you used to be, or find
your partner besieged by 50 suitors; regardless, it will not be the case that
your heart is now, from everyone else’s perspective, on the right-hand
side of your body. Figure 31 illustrates the categorical difference between
a rotation and a mirror-reflection.

On a sphere, on a torus, or in the Euclidean plane, any journey the
flag might take would result in, at worst, a rotation. There is no possible
path that allows for the flag to be mirror-reflected—a journey into the
fourth spatial dimension is required.
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Rotating the black flag in the
plane

Mirror reflection of the black
flag

figure 31. The flag cannot be spun to produce a
mirror-reflection.

From 2-Manifolds to 3-Manifolds

Let’s generalize these 2-manifolds, the torus and the Klein bottle, to
their three-dimensional equivalents, the 3-torus and the 3-Klein bottle.
To do so, we start with a solid cube, instead of a square, and identify
opposite sides, and mimicking what we did in two dimensions, we’ll
begin by creating a 3-torus. Again, we’ll take advantage of working in
three dimensions to bend the cube to identify the sides; the natural
space for the identifications is six-dimensional Euclidean space: in six
dimensions, the 3-torus is flat. If we are willing to have a curved, distorted
representation akin to the 2-torus in three dimensions, a “mere” four
Euclidean dimensions suffices to hold the 3-torus. For the 3-torus, arrows
are insufficient to specify an orientation of a face of the cube, but spirals
will serve. (Think about why this should be so.)

Figure 32 shows the initial solid block inscribed with appropriate
spirals. This time, we bend the sides of the cube around, identifying
the left and right faces while taking care that the spirals being glued

figure 32. A solid cube, with the
faces oriented by spirals.
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figure 33. Bending the cube in 3-space to identify same-colored left
and right sides so that the spirals’ orientations align correctly.

together spin in harmony (figure 33). After this first identification, we are
confronted with a millstone, whose top and bottom must be identified.
(The inside and outside are, of course, also identified. We’ll discuss that
afterwards.) Turn the millstone sideways—and shrink it—to make it easier
to visualize this step (figure 34).Proceed by identifying the visible gray
ring on the right-hand side of the millstone with the hidden gray ring on
the left-hand side (figure 35).

Now, we are presented with a donut that has a smaller donut drilled
out of the middle of its interior; a donut waiting for a filling, as it were.
A donut with a non-donut inside. The surface of the exterior donut is
a 2-torus, while the surface of the interior non-donut is also a 2-torus.
These two tori correspond to the front and back square faces of the initial

figure 34. Turning the millstone on its side.
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figure 35. Step II: Identifying the cube’s top and bottom (the
millstone’s left and right sides) so that the orienting spirals align.

cube, and they sprang into being when, in the process of identifying the
other four faces of the cube, only the edges of these squares were identified.
Now, the (invisible) interior 2-torus must be identified with the (visible)
exterior 2-torus. By tugging them both into the fourth dimension, where
they no longer divide space into an “inside” and “outside,” they may be
glued together, producing the 3-torus.

Before moving on, let’s look at one more way to visualize a 3-torus.
Once again, we’ll proceed by analogy with the eminently imaginable
2-torus. If we take a 2-torus and intersect it with a plane (as in figure 36),
the result is a circle (figure 36). Another way to see this is to take a slice of
the square that becomes the 2-torus (figure 37). If we think of a 2-torus
in this way and flatten it out onto the plane, we may represent it as a circle
of circles (figure 38).

If we take a three-dimensional slice of a 3-torus, we get a 2-torus.
One way to see that is to look at a slice of the solid cube we started with
(figure 39). Consequently, each slice of the 3-torus is “flattened” out into

figure 36. A slice of one side of the
2-torus yields a circle.
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These two points
are identified, which
creates a circle.

figure 37. A line with identified endpoints is a circle.

figure 38. The circles of a 2-torus, flattened into a circle of circles in
the plane.

figure 39. A slice of the 3-torus is a square with
identified edges—a torus.
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figure 40. The circle of 2-tori,
“flattened” out into 3-space.

3-space as a 2-torus. Since the two sides of the cube are identified, we get
a circle of 2-tori (figure 40).

Let us now consider the 3-torus as a model for the universe that is the
Library. Since it is a 3-manifold, the center of the 3-torus is everywhere
and nowhere, so the exact center is any hexagon.

Next, there is a sense in which the 3-torus has sorts of circumferences,
which arise in the following ways. Imagine we’re at the center of the cube,
facing “out of the page.” If we move to the exact center of the wall on
our left, when we reach it, due to the fact that it is identified with the
right-hand wall, the “left wall” is simultaneously the “right wall,” which
is actually no wall, but rather an unrestricted passage back to the other
side of the initial cube. So if we continue to move, we’ll end up back
where we started. (For that matter, if it is a small 3-torus, if we turn our
head and look to either left or right, we’ll see the back of our head.)

Similarly, if we moved up or down from the center of the initial cube,
we’d again end up back at the center of the cube. Finally, if we moved
forward or backwards, the same phenomenon would occur, which means
that in a small 3-torus, looking in any direction means looking at the back
of our head.

In a 3-sphere, if we head off straight in any direction and stay straight,
we’ll eventually circumnavigate the sphere along a great circle. In a
3-torus, if we head off straight in a particular direction and stay straight,
depending on the angle we set out we will eventually either end up
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exactly where we started or else come arbitrarily close to our initial
point. If the Library is a 3-torus, by dint of its enormity, again all of
its circumferences are unattainable by a librarian. Moreover, since there are no
boundaries to it, the 3-torus is limitless. Because journeying straight in any
direction would eventually return us to where we began, the 3-torus is
periodic. Therefore the 3-torus satisfies two of the three conditions of the
classic dictum and all three of the conditions of the librarian’s solution;
the only condition is misses is that it isn’t a sphere.

It is also geometrically flat, in the same sense as the 2-torus, which
might be a desirable quality for the Library. Although a large enough
sphere, such as the earth, will appear flat, a sphere is always curved.
Considering the Library as a 3-torus embedded in 6-space, there’d be
absolutely no way, locally, for the librarians to determine that they are
living in a 3-torus as opposed to living in Euclidean 3-space.

This leads to some highly speculative questions. What if the hypothet-
ical Builder(s) of the Library wished to test the librarians? If the Library
was a 3-sphere and the librarians grew tremendously technologically
advanced—more than us—they might develop a method to measure the
local curvature of space. If they discovered that the curvature was nonzero,
they’d know that the librarian’s solution at the end of the story was false:
Euclidean 3-space has no curvature. If, on the other hand, they found
the curvature to be zero, they would have to face the bitter realization
that once again, they didn’t possess enough information to decode the
topology of the Library.

S

The Library includes mirrors. Borges draws our attention to this via the
following passage, part of the description of the particulars of the makeup
of the Library:

In the vestibule there is a mirror, which faithfully duplicates
appearances. Men often infer from this mirror that the Library
is not infinite—if it were, what need would there be for that
illusory replication? I prefer to dream that burnished surfaces are
a figuration and promise of the infinite. . . .
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These orienting spirals 
are no longer mirror-
images, much as the 
creation of the Klein 
bottle hinged on 
switching the orienting 
arrows so that they 
weren’t mirror-images.

figure 41. A solid cube, with one different orienting spiral than in
figure 32.

After the development of our final 3-manifold, we’ll submit a fanciful
explanation accounting for the presence of the mirrors.

Begin by reversing the spin of one of the orienting spirals, and next
identify the opposite faces of the initial cube as we did creating the 3-
torus (figure 41). The outcome will be a three-dimensional Klein bottle,
which we’ll call the 3-Klein bottle. As with the 3-torus, we first endeavor
to identify the left and right faces of the solid cube; this time, though, we
are unable to accomplish the first step in three dimensions. Look closely
at the left-hand “bent-square” in figure 42. The spiral on both the left-
hand square and the right-hand square are turning clockwise. Thus, if
we naively try to put the two squares together as we did in creating the
3-torus, the orientations do not align. Rotating either of the squares will
not affect this problem, as the mere fact of the rotation will not impinge
upon the spiral’s clockwise orientation. (Think of it this way: imagine
walking up to your reflection in the mirror and attempting to touch your
right hand with its reflection. Easy to do. However, if your identical twin
walked up to you and you both held out your right hands in the same
fashion, your hands wouldn’t align or touch. This is why the spirals need
to be mirror-reflected, that is, flowing in opposite directions, for the sides
to identify.)

As with the Klein bottle, bending and twisting the cube up and around
allows the spirals to be in the same alignment when placed one over the
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?!?

figure 42. Similar to the 2-Klein bottle, these faces can’t be
joined—both faces have clockwise spirals on them. Since they must
be glued “face-to-face,” the spirals need to be mirror-reflected
orientation to properly align. Compare with figure 24.

other. Again, as with the Klein bottle, the oriented squares cannot be
joined in 3-space. To do so, we must again bend part of the cube “up”
into the fourth dimension, precisely the same as we did with the 2-Klein
bottle. (Unfortunately, due to the solidity of the interior of the cube, this
is beyond our ability to effectively illustrate: rather than a simple circle
of self-intersection, we’d be confronted with a truncated solid pyramid of
self-intersection contained in the interior of the original cube. The top
square of the solid truncated pyramid would be where the top light-gray
square “entered” the original cube, and the bottom of the solid truncated
pyramid would be the joined pair of light-gray squares facing us in the
front.) And then we must still perform other identifications!

The 3-Klein bottle can also be embedded so that it is flat; furthermore,
it enjoys many of the other properties of the 3-torus as well. It is therefore
a reasonable candidate for the topology of the Library.

However, if an intrepid nomadic civilization of librarians or a band
of immortal librarians managed to walk a loop that took them through
the identified disorienting faces, they would find that they would appear
normal to themselves, but when they returned to where they began, the
Library would be seen as if reflected in a mirror. The Library wouldn’t
have changed; rather, it is the librarians’ perspectives that would have
been turned inside out—in fact, it’s an interesting question whether or



88 S u n i m a g i n a b l e m at h e m at i c s

not such mirror-reversed people with mirror-reversed enzymes would be
able to eat our food and digest it to extract nutritional value. If we were to
ask them to raise their right hand, they would raise their left hand (from
our perspective), while truthfully swearing (from their perspective) that
they were raising their right hand. This is exactly parallel to the mirror-
reflection of the black flag in figure 30 and in figure 31 that occurs after
a complete circuit through the disorienting identification.

If the Library appeared as reflected in a mirror to the inverted
librarians, there are some things that would appear different. However,
by making only a few changes to the structure of the Library, we can
disorient the librarians so that if they should manage to make such a loop,
they wouldn’t easily detect that they’ve been mirror-inverted.

The first problem revolves around the spiral staircases. They might
all be subject to a rule such as “walking clockwise means going down”
(figure 43). When the librarians cross through the disorienting face, they
will find that the rule has become “walking clockwise means going up.”
The easy way to remedy this staircase asymmetry is to “insist” the builders
of the Library randomly designate different spiral staircases to go up or
down when traversed clockwise. Similarly, the sleeping compartments,
the lavatory closets, and the mirrors must be randomly distributed on left
and right sides of the entrances.

Another, and perhaps the most important, visual asymmetry is that
the orthographic symbols will be mirror-reversed. For an example, see

figure 43. On the left-hand spiral
staircase, walking clockwise means
walking down. On the right, walking
counterclockwise takes a librarian
down.
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FROWN FROWNversus

figure 44. The word “FROWN,” reflected in a mirror.

figure 44. An elegant way to avoid this asymmetry is to specify an alphabet
whose orthographic symbols are invariant under left-right flips; typically,
this is called bilateral symmetry. Here are 25 invariant Roman letters and
symbols from a standard computer keyboard.

A H I M O T U V W X Y 8 " " −
= + · : ∗ ˆ | ! . (blank space)

(A sharp-eyed reader will note that some of the letters in this font, such
as A, M, U, V, W, X, and Y, aren’t precisely bilaterally symmetric. These
letters need only minor modifications to become bilaterally symmetric.)
Fourteen other symbols, readily available, are also invariant under mirror-
inversions:

_ † ˚ ∞ ± ∏
� ¡ � ÷ ♦ ‡ Â ˘

Furthermore, there are pairs of symbols that when flipped produce each
other:

( ) [ ] { } < >

It wouldn’t take long to create an aesthetically pleasing set of 25 symbols
with the desired mirror-reversal invariance.

Along similar lines, almost all book titles are printed on the spine so
that if the book is laying flat on a table and the front cover is visible,
the title can be read: the tops of the letters abut the front cover of the
book. Let’s call this “top-front” labeling. Try vertically holding the spine
of a top-front book to a mirror. Not only are the letters mirror-reversed,
but the title now appears as a “top-back” label on the spine (figure 45). A
solution to this problem is to simply write the titles of the books vertically
down the spines (figure 46). This way, even with a mirror-reversal, a
librarian wouldn’t notice anything amiss.4

Moreover, it’s ironic that a band of immortal librarians who circum-
navigated the 3-Klein bottle Library and returned to their originating
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figure 45. “MOUTH,”
written horizontally on
the spine, reflected in a
mirror.

figure 46. “MOUTH,”
written vertically down
the spine, reflected in a
mirror.

hexagon wouldn’t recognize any of the books. Although the titles would all
be the same, the contents would all look different. Open a book to the
first page while looking in a mirror: it appears that the book is open to
the last page, not the first. So for the books in a particular hexagon to
read the same to a mirror-reversed librarian, the hexagon would need to
consist of books that were 410-page palindromes! However, if they were
intrepid enough to complete a second circumambulation of the Library,
they’d experience a mirror-reversal a second time and then everything
would look the same as when they started out.

Suppose that the constructors of the Library incorporated these design
changes to the physical structure and the orthographic symbols. If all the
librarians migrated, the Library would not look mirror-reversed to them,
even after passing through the disorienting identified faces. However,
if they split into two groups and one group managed to circumnavi-
gate the Library, the descendants of the nomadic group would return
and discover—from their perspective—a foreign group of librarians who
didn’t know left from right. Although it’s more likely that any such dispar-
ity would be attributed to language differences, a librarian of genius might
realize the significance of the invariance of the orthographic symbols
when reflected in the mirrors. Such a mathematically minded librarian
might then deduce that the Library is a nonorientable 3-manifold, and a
3-Klein bottle would surface as the most likely candidate. Such a librarian
would know more about the topology of the Library than we know about
our own universe.

S
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figure 47. Consider rings of adjacency as defining
hexagons on each floor.

We’ve now covered all the hard parts for the last topology we wish to
propose for the Library. The end result will once again be either a 3-torus
or a 3-Klein bottle; we will just take a different, more elegant, path to
achieve it. In our discussions of the tori and Klein bottles, we began with
a square or a solid cube and then, respectively, identified edges or faces.5

In the next chapter, we’ll look at a single floor of the Library, in part
by choosing an initial hexagon and considering rings of adjacencies to
it. Any ring of adjacency, combined with the hexagons contained inside,
forms another shape, which is essentially hexagonal in nature (figure 47).
(This is particularly clear if we look at the midpoints of the hexagons.) If
we start with a hexagon and carefully identify the sides, just as when we
start with a square, the resulting object is either a torus or a Klein bottle.
Jeff Weeks, in The Shape of Space, pages 116–26, discusses this and provides
very clear illustrations, and Weeks’ detailed explanation of these issues is
both elegant and relatively accessible. For a reader wanting to know more
about 2- and 3-manifolds, it is an excellent reference.

figure 48. A hexagonal prism whose same-color,
spiral-oriented faces will be identified. (The other
four sides aren’t shown.)
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There is, however, a major difference between the hexagon and the
square as the object that will have its edges identified. It turns out that to
embed the “hexagon with identified edges” in Euclidean 3-space, which
is not its “natural” home, the hexagon must be twisted as well as stretched
and bent.

Generalizing from two dimensions, it shouldn’t be hard to believe that
by starting with a hexagonal prism, identifying faces may yield either a
3-torus or a 3-Klein bottle (figure 48). This model of the Library has
the additionally pleasing aspect that, in some difficult-to-define sense, the
larger geometric structure mimics the smaller structure of the hexagon.
We wrote “difficult-to-define” because as soon as the faces are identified,
the hexagonal prism is subsumed into the 3-torus or 3-Klein bottle.
Again, a torus may be considered a square with its edges identified.
However, once the edges are identified, the edges are gone and the square
is gone: all that’s left is the torus. The identified edges may be drawn in
for the purpose of clarifying the process, but they are no longer there.
Equally possible, a torus may be a hexagon with its edges identified. In
both cases, the resulting object is a torus, but the differing characters of
the square and hexagon may leave a detectable, classifiable trace.

A Library modeled on the 3-torus or 3-Klein bottle could be based
on either a cube or a hexagonal prism with identified faces. It’s con-
ceivable that an immortal librarian of genius, endowed with a means of
measuring curvature and possessed of an infinite photographic memory,
who repeatedly traversed the Library might also some day be able to
guess the Library’s topologic structure. Regardless, we who may now
consider ourselves the architects of the Library may feel the special glow
that derives from the outlining of exquisite solutions to a demanding
problem.



five

Geometry and Graph
Theory
Ambiguity and Access

If one does not expect the unexpected one will not find it out.
—Heraclitus, Fragment 18

A library is a collection of possible futures.
—John Barth, Further Fridays

z T h e l i b r a ry , a s e vok ed i n th e s to ry , ha s

inspired many artists and architects to provide a graphic
or atmospheric rendition of the interior. These range from Stefano
Imbert’s lean and elegant drawing adorning the cover of this book, to the
deliberately alienated Piranesi-like drawings of Desmazières in the Godine
Press edition of The Library of Babel, to Toca’s beautifully symmetric
honeycombs in Architecture and Urbanism, to Packer’s bold expressionist
frontispiece in the Folio edition of Labyrinths, to a host of illustrations
easily found online. All of these illustrations sacrifice, to some degree,
accuracy in favor of artistic effect. For example, even the cover illustration
of this book locates the spiral staircase in the center of the hexagon,
whereas Borges writes (emphases added):

The universe (which others call the Library) is composed of an
indefinite, perhaps infinite number of hexagonal galleries. In the
center of each gallery is a ventilation shaft, bounded by a low
railing. From any hexagon one can see the floors above and
below—one after another, endlessly. The arrangement of the
galleries is always the same: Twenty bookshelves, five to each
side, line four of the hexagon’s six sides; their height of the
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bookshelves, floor to ceiling, is hardly greater than the height
of a normal librarian. One of the hexagon’s free sides opens onto
a narrow sort of vestibule, which in turn opens onto another gallery,
identical to the first—identical in fact to all. To the left and the right
of the vestibule are two tiny compartments. One is for sleep-
ing, upright; the other, for satisfying one’s physical necessities.
Through this space, too, there passes a spiral staircase, which winds
upward and downward into the remotest distance.

As we shall see, quite a lot pivots on the ambiguity arising from the
italicized phrase “One of the hexagon’s free sides opens onto a narrow
sort of vestibule, which in turn opens onto another gallery, identical to
the first—identical in fact to all.” (This passage is equally uncertain in
Spanish, “Una de las caras libres da a un angosto zaguán, que desemboca
en otra galería, idéntica a la primera y a todas.”)

Now, each hexagon has six sides, two sides of which lead to another
hexagon. If Borges meant that each one of the free sides gives upon a
narrow entrance way with two miniature rooms, then it follows that
in every doorway, there is a spiral staircase, rising and sinking beyond
sight. Surprisingly, profound and prodigious consequences derive from
this doubled staircase arrangement.

On the other hand, we may read the italicized phrase in a different
way. If Borges meant that exactly one of the free sides gives upon a narrow
entrance way with two miniature rooms, then it follows that the Library
contains pairs of hexagons, joined by small rooms and spiral staircases.
Although the difference may seem slight, in this variation of the Library,
not only are the plumbing and spiral staircase construction costs cut in
half, it actually turns out to be the case that the librarians can lead very
different kinds of lives than in the first scenario.

Before we illustrate these two possibilities, in the service of verisimil-
itude let us sensibly estimate the dimensions of one hexagon and then
sketch it. In his “Autobiographical Essay,” appearing in The Aleph and
Other Stories, pages 243–44, Borges notes that

My Kafkian story “The Library of Babel” was meant as a
nightmare version or amplification of that municipal library
[the Miguel Cané Municipal Library], and certain details in the
text have no particular meaning. Clever critics have worried
over those ciphers and generously endowed them with mystic
significance.
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We were fortunate to be able to visit the Miguel Cané Municipal Library
in Buenos Aires, and also both the old and new National Libraries of
Argentina. The first three measurements below come from the Miguel
Cané Municipal Library, while the fourth comes from a narrow and steep
marble spiral staircase in the old National Library.

Length of bookshelf: 3 meters (large double-sided bookcase)
Depth of bookshelf: 0.3 m
Height of bookcase: ∼ 2.21 m
Diameter of spiral staircase: ∼ 1 m

Miniature room for standing sleeping: ∼ 0.5 m by 0.5 m
Miniature room for relief of physical necessities: ∼ 0.5 m by 0.5 m
Walking space between staircase and walls: ∼ 0.5 m

Thus the approximate length of each hexagon’s side needs to be three
meters, which corresponds nicely to the actual size of the original book-
cases at the Miguel Cané Municipal Library. Based on the size of the
(presumably square) miniature rooms, the thickness of the walls of each
hexagon should be approximately 0.5 meters, although it appears the
builders could get by with walls 0.25 meters thick. See figure 49 for
the layout of a hexagon.

Another pertinent item is what Beatriz Sarlo notes on page 71 of
Jorge Luis Borges: A Writer on the Edge, “As Borges himself declared in an

Spiral staircase

Very low railing

Enormous ventilation shaft

These are in gray, as it isn’t
clear if Borges intended for
each entrance to have a spiral
staircase and two rooms.

Sleeping room Fecal necessities room

figure 49. A diagram of a typical hexagon of the Library.
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figure 50. Hexagons with a spiral staircase in every doorway.

interview, his first spatial idea for the Library of Babel was to describe it
as an infinite combination of circles, but he was annoyed with the idea
that the circles, when put in a total structure, would have vacant spaces.”
From the description in the story and especially this quote from Borges,
we conclude, as have a number of other commentators, that the Library
resembles a honeycomb with no interstices.

Figures 50 and 51 are a pair of illustrations putting together the
hexagons; for the first, we show four conjoined hexagons modeled with
a spiral staircase appearing in every doorway (figure 50). Based on the
second interpretation, figure 51 shows a linear arrangement of hexagons
designed with the staircases and two small rooms located in every other
doorway.

Now, we’ll make three general observations. Then we’ll first assume
that each and every doorway has a spiral staircase and see what conse-
quences ensue. After that, we’ll examine what happens when alternating
doorways are pierced by a spiral staircase.

Three General Observations

The most important fact is deceptively hidden in Borges’ simple
phrasing, “Twenty shelves—five long shelves per side—cover all sides

figure 51. Hexagons with a spiral staircase in every other doorway.
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etc.

etc.

figure 52. A contorted passage through the Library.

except two . . .” This obviously means that each hexagon has two
doors, but when combined with the snug nesting of the honeycombed
hexagons, it means that a librarian disdaining the stairs may only move
forward into a new hexagon or double back to the previously visited
hexagon. As in a labyrinth, a librarian remaining on the same floor has
one path only to tread.

The next observation is that it’s conceivable the floor plan of a level
of the Library may look like the preceding illustrations, in which the
paths run straight through the hexagons. However, it is consistent with
the text—and the atmosphere of the story—that the corridors weave and
spiral around symmetrically or chaotically (figure 52). (In the succeeding
pictures, in the interests of graphic clarity, we omit the miniature rooms,
the very low fence, and the spiral staircases, and shrink the enormous
ventilation shafts to small black dots.)

The last of the three observations is practical rather than structural or
theoretical. It also provides a nice example of “thinking like a mathemati-
cian.” If we use the shovel, pick, and whisk of our analytical imagination
to pare away the obscuring accretions of reality, we reveal the artifacts
of our ideas, which provide the wherewithal to build a theory. In this
case, we collapse each hexagon to a point, represent the passageways by
lines connecting the dots, and throw away the walls and bookcases of the
hexagons (figure 53). With these notions and simplifications in hand, let
us journey to the first of the two Libraries.
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etc.

etc.

etc.

etc.

figure 53. Clarifying the Library.

In Every Doorway, There Is a Spiral Staircase

Assume that every doorway is intersected by a spiral staircase, regardless of
pattern of floor plan. This prevalence of spiral staircases led to an inkling,
then a hunch that became a surmise, which we ultimately formulated
as a conjecture and subsequently proved. We approach this theorem
as a variation of the locked-room detective story, and hope that H.
Bustos Domecq, Borges and Bioy Casares’ fictional anti-detective, would
admire it.

We are librarians talking in a hexagon about the significance of the
25 orthographic symbols that comprise the markings in the books when,
from an adjacent hexagon, we hear raised voices shouting muffled words
that are difficult to comprehend; only the rage is clear. We hear thuds,
now, as the violence escalates. We look at each other, shocked, and
peer through the doorways into two of the six hexagons adjacent to
ours. As far as we can see through the portals, the nearby hexagons are
empty. Without any discussion, acting on impulses born of common
humanity, we each dart through one of the doorways leading out of
our hexagon. As we both scan the exit passages of the hexagons we’ve
just run into, the same thought, remarkably, simultaneously enters our
minds:

Will I, or my friend, necessarily be able to reach the adjacent hexagon
in time to prevent a murder?
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Continuing to run into connecting hexagons through the unique
entrance doorway and running out through the unique exit passage, we
each assure ourselves that the sounds truly came through the wall from a
hexagon abutting the one in which we were talking. (For example, the
sounds did not float down the airshaft or up a spiral staircase.)

After running until exhausted, you perceive an omnipresent and
ominous silence overwhelming the intermittent gasps of your fragile
breathing. Defeated, trembling, you reverse direction: your exit doorways
become entrance passages and vice versa. There is no chance that you
will become lost. The hope you cherish, that which gives you strength
enough to trudge back to the starting-point hexagonal gallery, is that I
was able to reach the adjacent hexagon in time to temper the dispute.

My crestfallen look, lit only by my eyes eagerly seeking to read your
face, is enough to tell you: I failed, also. We sit uncomfortably by the
air shaft and each recount the particulars of our fruitless runs; there’s not
much to say, “I ran in, I ran out; I ran in, I ran out; I ran in, I ran out; I
ran in, I ran out; . . .”

It is irrelevant which one of us first exclaimed, “The stairs! The spiral
stairs! Maybe we could have gone up, over, and down to the hexagon. Or
down, over, and up? Or down, down, over, up, over, over, up, up, over,
and back down?” It is equally irrelevant which combination of whose
thoughts destroyed this diaphanous, infinitely permutable, insight:

Every hexagon has an airshaft through the center—it is easy enough
to look up and down our airshaft and see what we always see: stacked
hexagons. Moreover, each hexagon has two sides singled out by the
presence of a spiral staircase (figure 54). Looking up and down the
spiral staircases of our hexagon confirms what we already know, that
the hexagons above and below must have the staircases in the same
sides as the one we are in. In other words, the hexagons above and
below are, in this regard, exact clones of our hexagon. Extending this
reasoning, for each and every hexagon on our floor, the hexagons above
and below it are exact clones. That means that the labyrinthine paths we
ran are precisely the same above and below—the stairs and shafts dictate
this.

Each floor plan is inevitably, invariably, precisely the same as every other
floor plan. There is no advantage gained by taking a set of stairs up or
down.
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figure 54. The spiral staircases and
the air shaft dictate the geometry.

We may, therefore, restrict our investigation to the floor we are on. We
might have been lucky; it could have been the case that our starting-
point hexagon comprised a part of the floor plan that looked like
figure 55. In such a case, one of us would have reached the hexagon
in seconds. On the other hand, we were unlucky, so unlucky that
we couldn’t say how unlucky we were (figure 56). We didn’t hazard
a guess as to how many hexagons we would have to pass through to

Initial
hexagon

etc.

etc.

The adjacent 
hexagon
of much 
consternation.

figure 55 (left). A path that quickly visits all six adjacent vertices.

figure 56 (right). A path that traverses an unknown number of
hexagons before reaching the hexagon adjacent to our starting point.
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figure 57. Part of a floor plan
that includes three closed loops.

reach the other librarians; such a presumptive act would be tantamount
to heresy. For that matter, after thinking about it, we daren’t even
say if the other librarians were really fighting; perhaps they belonged
to an entirely different civilization—perhaps an entirely different
species.

Our Stark and Depressing Realization: Our question was
decisively answered. We would not necessarily be able to reach the
adjacent hexagon in time to prevent a murder.

Our conception of the Library’s structure was so perturbed by these
cascades of devastating insights that it didn’t even occur to us until later
that the floor plan could plausibly contain eternally inaccessible closed
loops, such as the three in figure 57.

The unexpected, against our desires, found us and found us wanting.
Without the barrier of even a single door, the adjacent hexagon—the
source of noise, confusion, and probable violence—was locked away from
us forever.

(We were very startled to realize this; indeed, it only became clear
while flying to Buenos Aires when we sketched out the library floor plan.
Our readings of “The Library of Babel” always left us with the impression
that regardless of which hexagon “we” were “in,” we could reach any
nearby hexagon in a short period of time. The Realization of this section,
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in fact, a minor lemma in the field of graph theory, is a prime example of
the unimagined math of the story. The Math Aftermath, “A Labyrinth,
Not a Maze,” at the end of this chapter contains an extension of this
story providing a sense of why a stronger result about the inaccessibility
of adjacent hexagons must be true.)

There Is One Spiral Staircase Per Pair of Hexagons

Now let’s examine the Library by interpreting the first paragraph of the
story to mean that only one passageway in each hexagon is perforated by
a spiral staircase (as in figure 51). Once again, the hexagons are forced
to be stacked by the existence of the ventilation shafts, but in this case,
only one wall, one doorway, is specified by the spiral staircase. This entails
that although the hexagons’ sides are aligned, they are no longer cloned.
Hexagons above and below each other must share one entranceway, but
the second may branch out in a different direction (as in figure 58).

Thus, a pair of floors may have labyrinth patterns such as these
depicted in figure 59. These illustrations include the spiral staircases,
because the presence of a staircase induces a connecting passage between
hexagons on all other floors of the Library. Combining the floor plans
produces the pleasingly symmetric picture of figure 60. Most importantly,
this means that a librarian may reach any adjacent hexagon by traveling
through only two additional hexagons and two flights of stairs, one up,
one down. The sense of a bewildering array of choices is omnipresent
and factual.

It is our considered opinion that Borges simultaneously intended
for the Library to have a spiral staircase in every doorway and also to
present the librarians with a bewildering array of options. The “stark and
depressing realization” of the librarians in the preceding section indicates
the impossibility of such a conjunction, whereas this minor modification
allows for enormous mutability in the floor plans and potentially a quick
access to any nearby hexagon.
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figure 58. Note the three different
doorways to the heterogenous
hexagons.

figure 59. Two different floor plans allowed in this version of the
Library.

figure 60. An overlay of the two floor
plans, which illustrates the complete
accessibility of all adjacent hexagons.



Math Aftermath: A Labyrinth,
Not a Maze

The subject does not belong to the world; rather, it is a limit of the world.
—Ludwig Wittgenstein, Tractatus Logico-Philosophicus

The goal of this Math Aftermath is to provide grounds for believing an
even stronger consequence than the “stark and depressing conclusion”
that followed from the first case we deconstructed, that adjacent hexagons
need not be accessible. The stronger consequence has a relatively easy
proof, but is too messy to offer up in these pages due to the necessity of
breaking down a number of related cases. (Despite not offering much of
a framework for the proof, it is tempting to employ the standard trope
appearing in works of mathematics at moments such as this: “The reader
may supply the details.”) The librarians in this pastiche will name it “our
conjecture of extreme disconsolation,” and it is:

In any Library constrained as this one,
on any given floor,
for any positive integer n less than, say, 1,000,000,000,000 = 1012,
there must necessarily be pairs of abutting hexagons, H1 and H2,
such that a librarian would need to walk through more than n

distinct hexagons to travel from H1 to H2.

That is, there are many, many hexagons that possess effectively inaccessible
adjacent hexagons.
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(Now, if these observations were deep mathematical insights wor-
thy of publication in an eminent journal—or even a second-rate
journal—we’d probably label the “Stark and Depressing Conclusion”
weak inaccessibility and “Our Conjecture of Extreme Disconsolation” strong
inaccessibility. Also, an aspect of the statement of the stronger result is
worthy of comment: notice that the amount of detail accrued in the
service of excluding unwanted interpretations renders it difficult to read
and to understand. This seems to yield the counterintuitive notion that
the more precise the transmission of an idea, the more opaque the
language.)

Let us now rejoin our librarians, at the moment after their “stark and
depressing conclusion.”

Librarians Redux

It was as if our minds, mocking our exhausted, rooted, dispirited bodies,
were set free. Almost in opposition to our wills, without fully digesting
the realization, we continued to ruminate on these matters. One of us—
does it matter which?—invoked a fragment in a contentious book found
on a lower level, that read in part,

Imagine a narrow flexible tube, one thousand miles long, called
a “garden hose,” laid out flat on a gigantic floor so that the
hose impeccably fills the floor. The hose may curve abruptly,
swirl painfully, spiral exuberantly, loop discursively, or even run
straight, but it may never cross over itself nor rise from the
ground in any way. Perhaps at many points the hose makes a
kind of moral cusp or treacherous eddy and the close-by exterior
parts of the tube nestle next to nearby parts of the tube. Skywards
down to the hose, the view of the godlike will pinpoint many
spots where the hose appears as parallel strands lying next to
each other. At those spots, an ant—a tiny six-legged librarian—
crawling through the interior of the hose may travel a consid-
erable distance, perhaps miles, to reach a contiguous section.
Even worse, never mind the Origin of the ant: the more it
crawls, the more places it finds where the walls of the hose
keep it further and further away from places the godlike can see.
Lament, therefore, the linear forwards-and-backwards motion of
the ant inside, while the nonlinear arabesques of the exterior
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hose bring grace and redemption to those who can read them.
Never shall the ant crawl from the interior and gaze upon the
wholeness of the hose.

Paralyzed, we saw that although our limbs numbered four, and despite the
fact that we weren’t trapped in such a strange loop, there were striking
similarities between the situation for the ants and for us. Regardless of
the clever patterns taken by a godlike being laying down the garden
hose, there must ever be more spots where the long, slimber structure
of the loops of the hose would thwart an ant’s attempt to move to any
point athwart of the hose besides those immediately forwards or directly
backwards. Clenching the hose into a crimp and then twisting it around
in a whirlpool will produce a section where the ant could easily travel to
all spots near its starting point, but then as the hose continues to be laid
down, filling out the floor, circling around and again in a dizzying whorl
of a world for the ant... we simply stopped talking, exhausted, looking up
and down the airshafts.

Our Conjecture of Extreme Disconsolation: There are
unimaginably vast numbers of pairs of adjacent hexagons such that the
span of our combined lives would not suffice to travel from the one to the
other.

Our earlier impotence was now seen to be a dream; our true plight lay
revealed: perhaps we inhabited a section of the Library where all or most
hexagons would allow us to attain only two of the six adjacent hexagons.
All of those books, perhaps my or my friend’s Vindication, perhaps a
grammar of an ideal logic capable of straightening out the labyrinth in
which we found ourselves, perhaps a fitting valediction for a carelessly
dropped book mournfully hurtling down an airshaft, all these books
would never be read by us.
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More Combinatorics
Disorderings into Order

There is a secret element of regularity in the object which corresponds to a
secret element of regularity in the subject.

—Johann Wolfgang von Goethe, Maxims and Reflections

Thinking man has a strange trait: when faced with an unsolved problem
he likes to concoct a fantastic mental image, one he can never escape, even
when the problem is solved and the truth revealed.

—Johann Wolfgang von Goethe, Maxims and Reflections

Either a universe that is all order, or else a farrago thrown together at
random yet somehow forming a universe. But can there be some measure
of order subsisting in yourself, and at the same time disorder in the greater
whole?

—Marcus Aurelius, Meditations

z C alculat ing the number of d i st inct books

in the Library, as seen in “Combinatorics: Contemplating
Variations of the 23 Letters,” is an example of a straightforward problem
with a tidy solution. In this chapter, we do not so much solve a problem
as explore how a maximally disordered and chaotic distribution of books
in the Library can be seen as a Grand Pattern. This work is grounded
in ancient ideas of combinatorial analysis, and although the ideas are
consistent with the structure of the story, the ordering of the books we
outline is incompatible with the Librarian’s “elegant hope” that

If an eternal traveler should journey in any direction, he would
find after untold centuries that the same volumes are repeated in
the same disorder—which, repeated, becomes order: the Order.
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The Order conjectured by the librarian is an iterative order; a two-
dimensional analogue may help to visualize it. Think of the complete
ordering of all the books as being given by the imprint of a rubber stamp.
After making an initial stamp (the section of the Library that the librarian
lives in), without rotating the stamp at all and without overlapping stamps,
continue applying the stamp up and down, left and right, and eventually
cover the piece of paper. This translates the original order in all directions,
vertically and horizontally, forming a simple kind of symmetry.

The Grand Pattern we propose in lieu of the Librarian’s iterative
Order is, in some sense, an ever-growing chain of concatenations of
all possible orderings. To help envision what we mean, imagine that the
Library is finite and approximately in the shape of a cube. Suppose we
adjoined another Library-sized and Library-shaped building to the first
one and distributed the 251,312,000 unique books in a different ordering.
This surely violates the Librarian’s elegant hope, for it contradicts his
vision that the addition should contain the books in precisely the same
order as the original section. Now, suppose we continue to extend the
Library by adjoining Library-sized and Library-shaped structures, each
time distributing the books in a new ordering. Our endeavor now is to
formalize the process, being as disorderly as possible, and at the end of a
piece-by-piece construction, find an infinitely sized Library with a Grand
Pattern occupying the whole of Euclidean 3-space.

Let’s begin with a relatively simple question: how many distinct linear
orderings are there of the three objects {�, �, •} such that each object
appears exactly once? A few moments of work produces the following
list:

1. �,�, •
2. �, •, �
3. �,�, •
4. �, •, �
5. •, �, �
6. •, �, �

How might we convince ourselves that the list exhausts all possibilities?
Perhaps by noting that we can fill the first slot three different ways, with
either �, �, or •.
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first slot second slot third slot

3
choices

2
choices

1
choice

6
choices

figure 61. There are six ways to order three objects.

Once the first slot is filled, we are left with exactly two objects and
two slots. Either of the two remaining objects can fill the second slot: we
have two choices. Then, whichever object is left must fill the last slot. In
other words, there are six different ways to fill the slots (figure 61).

Since the list has six distinct entries, we may be sure we’ve exhausted
all possibilities. Generalizing this line of thinking, if we have four objects,
there will be

4 × 3 × 2 × 1 = 24

distinct ways to arrange the four objects: four choices for the first slot,
three for the second slot, two for the third slot, and only one object
remaining to fill the last slot.

Explicitly writing out the multiplications is viable for a relatively
small number of objects. However, if we wished to signify the integer
corresponding to the number of different ways to order only 25 objects,
we’d find it cumbersome. Fortunately, a snappy notation, that of the
factorial, was developed in the early 1800s:

1! = 1
2! = 2 × 1 = 2
3! = 3 × 2 × 1 = 6
4! = 4 × 3 × 2 × 1 = 24
...
25! = 25 × 24 × 23 × · · · × 3 × 2 × 1
...
n! = n × (n – 1) × (n – 2) × · · · × 3 × 2 × 1.

The orthographic symbol “3!” is read and pronounced as “three factor-
ial,” where “factorial” is understood to represent the process of multiply-
ing an initial integer by every positive integer smaller than itself.
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Several observations about factorials. First, on a personal note, even
after 25 years of the serious study of mathematics we still tend to read
“3!” as “THREE!” (very excitedly). Second, although we won’t use
the answers in this work, some natural questions to ask are “How is 0!
defined?” and “Can we make sense of the expressions

(
11
2

)
or !

even though they are not integers?” One tempting possible answer for the
latter question is to focus on the “keep multiplying by numbers reduced
in size by subtracting one” aspect of the factorial, and define, for example,

(
11
2

)
=

(
11
2

)
·
(

9
2

)
·
(

7
2

)
·
(

5
2

)
·
(

3
2

)
·
(

1
2

)
=

10, 395
64

.

Instead, in 1729, a similar yet more encompassing route was discovered
by Leonhard Euler. Euler used the integral calculus to define a new
function, called the gamma function, which, like the logarithm, possesses
many interesting properties. One is that if a positive integer n is input to
the gamma function, then (n – 1)! is the output, meaning that the gamma
function is essentially a generalization of the factorial. We test our naïve
guess by inputting 13/2 to the gamma function, and find that the output
is, in fact, pretty close:

10,395
64

√
.

At any rate, factorial notation shares a property with exponential
notation: it is easy to write down unimaginably large numbers. Take,
for example, the number 70!, which by virtue of the simplicity of its
written form appears as though it should fall within the grasp of the
human imagination. In reality, 70! is larger than 10100, and as we saw in
the chapter “Combinatorics,” 10100 grains of sand would completely fill
10 billion universes the size of our own.

Now, in the sort of action standard for a mathematician that incurs
withering scorn from engineers, we accomplish the impossible by simply
asserting it as a fact: number all the book-sized slots in the bookcases in
the Library from 1 to 251,312,000. (Wasn’t that easy?) Via this numbering
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of the spaces in the bookshelves, we may use the factorial to compute the
number of different ways to order the books in the Library. Even though
the numbering of the slots in bookcases in the Library necessarily twists
and snakes through three dimensions, we can still regard it as a consecutive
sequence of 251,312,000 slots laid out in a row. Put another way, regardless
of how they are distributed in space, the positive integers have an intrinsic
linear ordering, given by the progression 1, 2, 3, etc.

Given that each specific book fills a particular numbered slot, armed
with the factorial notation we may trivially write down the number of
different ways that the books in the Library may be shelved. Considering
each book as a distinct object, there are

(
251,312,000)!

different orderings. We’d like to get a sense of the magnitude of this num-
ber; after all, a factorial as small as 70! taxes our power of visualization by
easily exceeding the number of subatomic particles in our universe. For-
tunately, Stirling’s approximation to the factorial gives a good estimation, in
the sense that we can see this gargantuan number as an exponential of 10.

Stirling’s approximation applied to
(
251,312,00

)
! yields 101033,013,740

.

This says that the number of different orderings of the books in the
Library is approximately a 33-million-digit number; in the context of the
story, it would take about 26 volumes simply to write down the number.
The upshot is that Builders may construct a finite-sized Library housing
all possible orderings of the books by assembling

(
251,312,000

)
! Library-

sized and -shaped buildings, filling each such building with exactly one
ordering of the books.

If, though, along with the librarian, we assume that the Library is infi-
nite in all directions, we have ample space for a more ambitious scheme
than simply accounting for all orderings. We’ll begin by defining a libit
as a contiguous collection of accessible hexagons holding one particular
ordering of the 251,312,000 distinct books of the Library—any shape of the
libit is acceptable so long as Euclidean 3-space can be completely tiled by
replicas of that shape. Although we are imagining a libit looking roughly
cubic or almost like a hexagonal prism, here’s an extreme example unlike
those: a tower of stacked single hexagons sufficient to hold all the distinct
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books. Here’s another: a giant near-hexagon of hexagons completely
contained on one floor, again sufficiently large to hold all the distinct
books.

Next, tile all of 3-space by clones of the libit, and from the infinite
possibilities, arbitrarily choose an initial libit and also any hexagon con-
tained within. We’ll use this hexagon as a reference point, and consider it
to be the origin of the Library. Starting at the origin, successively choose
contiguous hexagons in an orderly fashion until the first libit is completely
numbered. (It is not unreasonable to worry about how to ensure that
every hexagon will be numbered. We address this issue in the chapter
“Critical Points.”)

Now choose an adjacent libit, and starting in the “same” hexagon as
in the first libit—that is, in the hexagon in the second libit that corre-
sponds to the origin—extend the numbering starting with 251,312,000 +
1. The numbering of the second libit will, of course, run all the way
up to 2· (251,312,000

)
. Next, repeat the process by choosing a third libit

contiguous to the second one, and number the slots on the shelves as
before.

Continue to iterate the procedure until the shelves in
(
251,312,000

)
!

contiguous libits are numbered, and note that each of the
(
251,312,000

)
!

different orderings is composed of 251,312,000 different books. Thus, for
the first step of the Grand Pattern, we utilize the first

251,312,000 × (
251,312,000)!

= (Number of distinct books) × (Number of distinct orderings)

slots in the infinite Library.
However, as we were filling the libits with different orderings, we were

implicitly making choices regarding the possible orderings of the books.
Making the Grand Pattern requires us to leap categories and consider
orderings of orders. Let’s do a smaller-scale example of a Grand Pattern
constructed in the Euclidean plane.

Instead of books, we’ll use the three letters {a, b, c}. In Step 1, we
give a straightforward ordering of the three letters, which, by analogy, is
similar to using books to fill the first libit. For Step 2, we produce one list
of the 3! = 6 possible orderings of the three letters, and we think of this
as the set of

(
251,312,000

)
! libits described above (figure 62). Next, note

that there are 6! = 720 distinct lists of six orderings. This is exactly the
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Here are Steps 1 and 2 of a
Grand Pattern constructed in
the plane from the three 
letters a, b, and c.

Step  1: This is one possible
ordering of the three letters.

Step 2: This is one possible
ordering of the list of all six
different orderings of a, b, and c.
Note the ordering from Step 1,
which is subsumed in Step 2,
is shown in gray.

a b c

b a c

a c b

a b c

c b a

c a b

b c a

Step 1 Step 2

figure 62. The beginning of a Grand Pattern.

idea we want to communicate: that although we ran through all possible
orderings in the list of six, if we think of each of the six orderings as a
new unit there are 720 orderings which must be accounted for in Step 3.
Put another way, first we worried about all the ways to order {a, b, c}.
Now, we want all possible orderings of

{ [a, b, c]; [a, c, b]; [b, a, c]; [b, c, a]; [c, a, b]; [c, b, a] } .

Figure 63 shows five distinct lists, beginning a spiral, which ultimately
creates a new, larger rectangle filled out by all 720 distinct 3 × 6 rectan-
gles. This, in turn, is an ordering of orderings of orderings and guarantees
that at the next stage, Step 4, we’ll be able to continue to spiral around
and create an even larger rectangle.

Now, let’s move out of the plane, return to the Library, and apply these
ideas to create the Grand Pattern there. At the conclusion of the first step,
we went on hiatus having filled

(
251,312,000

)
! libits, each representing an

ordering of the Library. Now we boldly expand the Library until there
are

((
251,312,000)!)!

libits, each one representing a distinct ordering of distinct orderings. In
other words, this second step of the Grand Pattern subsumes the first step
as just one particular ordering of all orderings of the books of the Library.
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Step 3: Here’s the begining of one 
possible ordering of the 720 orderings 
of the lists of six distinct orderings of 
the letters a, b, and c. (If this picture 
were complete, there would be
3.6.720 = 12,960 boxes with letters 
contained inside: all possible ways to
write lists of six triplets of letters.)  

Pictured are five distinct lists, each
of which is a legitimate example of
a list satisfying the needs of Step 2.
Note that the additional lists form
a spiral around the first, and it is
essential that the collection of all
720 lists ultimately forms a rectangle.  

Continuing in this fashion 
through subsequent steps eventually
fills the plane with all orderings,
orderings of orderings, orderings of 
orderings of orderings, etc. (Step 4
would consist of 3.6.720.720! boxes
with letters contained inside. This is
approximately 101,751 boxes.) 

a ab
b

b
b

b

b

b

b

b b

b

b b b

b b

b

b b b

b

b b

b

b

b

b
b

b
b
c

c c

c

c

c c

c
c c

c

c

c

c

c

c

c c c

c c

c c

c c

c c

c c

c

a

a
a

a

a

a

a

a

a

a

a a a

a a

a a

a a

a

a a

a

a

a

a

a

a

figure 63. Taking another step towards the Grand Pattern.

And now the iterative process grows clear; the third step of the Grand
Pattern must account for all orderings of all orderings of all orderings of
the books in the Library. There are

(((
251,312,000)!)!)!

such orderings. The third step of the Grand Pattern subsumes the second
step as just one particular ordering of all orderings of all orderings of the
books of the Library. And so on, and so on, and so on.

One appealing aspect of the Grand Pattern is that for any conceivable
finite assemblage of orderings in libits, infinitely many sections of the
Library will contain precisely that same distribution of books. Each new
step incorporates the preceding step as one subunit of the new step, and
so each step repeats and repeats and repeats.
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Another consequence, somewhat amusing, is that there will be abut-
ting libits whose distributions are, in a sense, palindromic. A librarian,
fortuitously born by the border between these two libits, would find a
vast “wall” of adjacent duplicate hexagons! Moving in one hexagon away
from the border in each direction would also reveal duplicate hexagons.
Ditto for moving in two hexagons away from the border, and so on.
There are as many quirky distributions in bordering orderings as we can
imagine; after all, every distribution appears next to every other. Could
a human librarian born in such a border locale guess that the Library
contained volumes consisting of all possible variations of 25 letters?

A sharp-eyed reader may have noticed that we’ve consistently written
“the Grand Pattern,” as opposed to “a Grand Pattern.” This is because
once we have settled on a libit shape, there is only one such Grand Pattern.
(See the Math Aftermath for more about why we must choose a libit
shape.) Here is one way of seeing this mild form of uniqueness of the
Grand Pattern:

Assume we’ve already constructed an infinite Library with books
distributed in a Grand Pattern. Also assume, for the sake of argument,
that a godlike entity also constructs an infinite Library, and for reasons that
range from the puckish to the profound, wishes to distribute books in a
different Grand Pattern. This Other Entity chooses the same-shaped libit,
and after envisioning a tiling of the second Library, starts at an arbitrary
hexagon, and for the first step, distributes 251,312,000 books in an allocation
varying from ours. Next, for Step 2, the Other Entity distributes books
into the remaining

(
251,312,000)! − 1

libits in a distribution unlike our second step. And so on.
Let us add omniscience to our list of godlike attributes. Consequently,

we know exactly how the Other Entity will distribute the books for the
first step, the second step, etc. etc. Since every finite pattern, no matter
how large, appears in our Grand Pattern, we simply choose an initial libit
from our pattern which has the same distribution of books as the Other
Entity’s first step. By dint of omniscience, in fact, we chose that initial libit
so that, moving outwards, it exactly shadows the Other Entity’s second
step, too. In fact, for any positive integer n, we chose so well, that moving
outwards shows precisely the same distribution as the Other Entity’s nth
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step; and remember, as implausible as this may seem, we must remind
ourselves that all finite patterns, no matter how large, appear in a Grand
Pattern. Finally, we observe that since our Grand Pattern exactly mimics
the Other Entity’s Grand Pattern for every positive integer n, it shadows
it for all n; therefore, the two Grand Patterns must be the same. (See the
Math Aftermath for more about this leap of logic from the finite to the
infinite.)

A librarian granted eternal life and a Funes-like infinite capacity for
photographic memories, walking a Grand Tour of the Library, reading
and distinguishing every book, would discover that no pattern reliably
repeats. On the other hand, a librarian of genius, equally endowed
with the unimaginable ability to process titanic amounts of information,
might well guess that, for a choice of the shape of a libit, the books
are distributed throughout the Library in all possible orderings. And all
possible orderings of all possible orderings. And all possible orderings of
all possible orderings of all possible orderings . . .

As such, the books of this infinite Library are maximally disordered;
and yet this ultimate disorder forms a unique overarching Order of all
orderings: the Grand Pattern.



Math Aftermath: Libits,
Uniqueness, and Jumping from
the Finite to the Infinite

It is hard to be finite upon an infinite subject, and all subjects are infinite.
—Herman Melville, The Piazza Tales and Other Prose Pieces

In what follows, we briefly discuss two subtle points from above. First,
we examine why the libits must be the same shape while comparing their
respective Grand Patterns. If they are allowed to be dissimilar, we’ll use,
as an example, the two extreme examples from earlier in the chapter:
we’ll say a tower libit is a slender tower of stacked single hexagons, while a
floor libit is completely contained in one floor. Imagine seven tower libits,
six of them adjacent to a central one, that are exactly the same save that
in their top hexagons, four books are permuted into slightly different
positions. Then the towers are all identical except in the top hexagons,
and even there, each top hexagon contains the same books as the others.
(See figure 64.)

We claim that no floor libit can accommodate this distribution, for any
floor libit that contains any hexagon of the central tower libit necessarily
also contains a hexagon of at least one of the adjacent tower libits. By
construction, these two hexagons must contain precisely the same books.
However, no libit can have duplicate books; thus it follows that a Grand
Pattern constructed out of tower libits cannot be replicated by floor libits.
(See figure 65.)

S
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figure 64. The seven adjacent tower libits.

In this part of the Math Aftermath, we consider the leap from the finite
agreement at “each n” to the infinite agreement at “every n” that arose
in the comparison of our Grand Pattern and the Other Entity’s Grand
Pattern. Here is a sequence of ideas that may help act as a bridge across the
unimaginable abyss between the finite and the infinite: suppose our Grand
Pattern differed from the Other Entity’s. Then, by the well-ordering
principle (see below), there is a smallest positive integer—for example,
412—such that our Grand Pattern differs from the Other Entity’s Grand
Pattern at Step 412. However, we know that the Grand Patterns are
exactly the same at each finite step, including step 412. Thus, there can be

figure 65. Any floor libit intersecting the central tower.
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no smallest integer at which they differ. Therefore, they are everywhere
the same!

The well-ordering principle is an axiom of set theory (in some less
commonly used logical models of arithmetic, it is a provable theorem).
It says, in essence, that any set of positive integers has a smallest member.
Although this sounds relatively innocuous, the constructivist school of
mathematicians raises nontrivial objections to the well-ordering principle
and the theorems which spring from it. It is worth mentioning that
although these objections can never be formally refuted, there are few
working pure mathematicians who are constructivists. On the other hand,
a number of prominent computer scientists and applied mathematicians
are in sympathy with the philosophic beliefs of the constructivists; for
example, for them, a number doesn’t exist unless it can be constructed.
A strict constructivist won’t admit the actual existence of  or

√
2 in the

sense of an endless decimal expansion; rather, such a thinker would only
acknowledge rational approximations to these irrational numbers.
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A Homomorphism
Structure into Meaning

Because we do not understand the brain very well we are constantly
tempted to use the latest technology as a model for trying to understand it.
In my childhood we were always assured that the brain was a telephone
switchboard. (‘What else could it be?’) I was amused to see that Sherring-
ton, the great British neuroscientist, thought that the brain worked like a
telegraph system. Freud often compared the brain to hydraulic and electro-
magnetic systems. Leibniz compared it to a mill, and I am told some of
the ancient Greeks thought the brain functions like a catapult. At present,
obviously, the metaphor is the digital computer.

John Searle, Minds, Brains and Science

What is a divine mind? the reader will perhaps inquire. There is not
a theologian who does not define it; I prefer an example. The steps a
man takes from the day of his birth until that of his death trace in time
an inconceivable figure. The Divine Mind intuitively grasps that form
immediately, as men do a triangle. This figure (perhaps) has its given
function in the economy of the universe.

—Jorge Luis Borges, “The Mirror of Enigmas,” in Labyrinths

z T h e t im e ha s come to r e tu rn to th e fi r s t

person singular voice. I’ve done my best, up to this chap-
ter, to restrict myself to excavating, extending, enlarging, and explaining
mathematical ideas which naturally arise from the story. But now, after
scanning critical reviews and interpretations of coded meanings of the
story, I find I have another reading to add to the existing constellation: a
homomorphism between the structures of two different ideas. In biology,
a homomorphism is a correspondence in appearance or form, but not
in structure or origin. In mathematics, a homomorphism has almost
the exact opposite meaning: it is a formal map between two seemingly



a h o m o m o r p h i s m S 121

dissimilar algebraic objects that illuminates a deep correspondence
between their underlying structures. Unfortunately, interesting examples
require background information beyond the scope of this book, and I
stress that I am using the term “homomorphism” metaphorically. (In fact,
I’m using “homomorphism” as a synonym for “metaphor.”)

In 1931, by proving his first and second incompleteness theorems,
Kurt Gödel inspired a thorough—and ongoing—reconsideration of the
logical foundations of mathematics. Many excellent books have been
written on Gödel’s theorems; for my purposes, it is enough to think
of the first incompleteness theorem as saying that if a formal axiomatic
system is rich enough to generate the positive integers and the operations
of addition and multiplication, then there are statements expressible that
are undecidable: they cannot be proven true within the system of axioms,
nor can they be proven false. In other words, the system is incomplete. (The
second incompleteness theorem is a deep related result about proving the
consistency of such axiomatic systems.)

In 1936, Alan Turing became a founder of computer science when
he creatively combined his own brilliant ideas with some of Gödel’s
and published “On computable numbers, with an application to the
Entscheidungsproblem.” The Entscheidungsproblem was originally posed by
Leibniz in the 1600s and formalized by Hilbert in 1928. It wondered
whether a mechanical process or machine, manipulating symbols, could
correctly assign truth values to statements posed within an axiomatic
system such as mathematics. In other words, the problem asked if it is
possible to create an automatic process that would determine whether
any given theorem is true or false. The mechanical process or machine
wouldn’t need to provide a proof of a true theorem; it simply needed to
correctly identify it as true.

Turing’s brilliant tactic was to focus on the halting problem for
computers, which hinges on a simple yes/no question: given a program
coupled with a starting condition for that program, once it has begun
to run, does it ever stop? For example, a program might be called
NextPrime, and depending on the starting condition, the output will
be the very next prime. If we use 17 as the input, then NextPrime will
output 19, as 19 is the next prime after 17. On the other hand, using the
current state of number theory and computer technology, if 251,312,000 is
input to NextPrime, the program would run for years without giving the
next largest prime. In this context, the Halting Problem asks if there could
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be one master program called, say, HALT, which would take the program
NextPrime and starting condition 251,312,000 as inputs, and would output
YES—because, in fact, given sufficient time and resources, NextPrime
will eventually output the first prime larger than 251,312,000.

Let’s consider the alternative, a program that never halts. An example
of such a program involves finding pairs of twin primes, which are two
prime numbers p and (p + 2). For example, {3, 5} and {29, 31} and
{59, 61} are pairs of twin primes. The Twin Prime conjecture states that
there are infinitely many pairs of twin primes, and in the past 100 years,
mathematicians have amassed a fair amount of evidence to suggest that it is
true. On the other hand, no proof has yet been found, so it is possible that
there is an unimaginably large pair of twin primes that is the last such pair.
A point of interest is that the Twin Primes conjecture is not falsifiable by
showing the existence of a huge stretch of consecutive primes that have
no twins. It’s always possible that that the very next prime will have a
twin.

Let TwinPrime be a program that finds twin primes, and let the
starting input be the prime number two. When TwinPrime starts, it
is guaranteed to run forever, either outputting pairs of twin primes
until the computer crumbles into dust or, if there is a largest pair of
twin primes, continuing to fruitlessly check larger and larger primes to
see if they have twins. Whether or not there are a finite number of
twin primes is irrelevant: TwinPrime will never halt. Thus, if HALT
existed, if we input the program TwinPrime and a starting condi-
tion into HALT, the output would be NO—this program will never
halt.

However, Turing showed that the halting problem is undecidable; that
is, there is no way to construct a master program HALT that will always be
able to determine if an input program and starting condition will or will
not halt. As a consequence of the undecidability of the halting problem,
it follows that the answer to the Entscheidungsproblem is negative: there
can be no such process or machine that will decide whether a theorem in
arithmetic is true or false.

A key element of Turing’s proof is the creation of an abstract comput-
ing machine, since dubbed a Turing machine. The Turing machine consists
of a black box and an infinitely long strip of tape; if the concept of
“infinitely long tape” is distressing, instead think of it as “a very long
tape, with dedicated crews of tape-extenders who are always able to add
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Turing Machine

1 0 1 0 1 0 0 1 1 1 1 1 10 0 0 0

figure 66. A Turing machine sits on an infinitely long strip of tape.

more tape as necessary.” The tape is divided into little one-unit squares,
and the black box occupies one square at a time. Each square of the tape
may contain an orthographic symbol from a finite alphabet on it, or it
may be blank (figure 66).

The black box begins sitting at a given spot on the tape, called the
initial position, and the black box is in an initial internal state. An internal
state is a simple instruction on what to output, given a particular input
received. There can only be a finite number—possibly very large—of
internal states. The black box reads the symbol in the square that it’s
sitting on, and this is the input for the Turing machine.

The Turing machine may then do several different things, depending
on its internal state and the symbol in the square:

� It can erase the symbol in the square.
� It can write a new symbol from the finite alphabet in the square.
� It can change to a new internal state.
� It can move either to the left or right one square.
� It can halt (permanently).

That’s it! Despite their prosaic description, Turing machines are remark-
able. Although the Turing machine would run much, much, much
slower, a programmer could write instructions for it that would reproduce
any program available on the most advanced supercomputer in existence.
Every single program for a desktop computer, including any program for
word processing, graphics, or internet browsing: all may be converted into
a format suitable for a Turing machine, which would then produce exactly
the same output. (Of course, without a suitable way of converting the
infinite tape’s information into a picture on a screen, the output would be
difficult to recognize.) Stronger still: any computing task currently imag-
inable by human intelligence may be performed by a suitably programmed
Turing machine.
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The Church-Turing thesis captures this state of affairs and projects
it into the future; it says that any task done by any possible computing
device running any possible software could also be done by a suitably
programmed Turing machine. The reason it is called a “thesis” as opposed
to a “theorem” is that it can never be proved. There’s simply no way
to do so, because we have no idea of the possible computing devices
or programs that might be dreamt of and implemented at some time
in the future. On the other hand, the Church-Turing thesis could be
disproved, because someone may invent a new kind of computing device
which performs a task beyond the capabilities of a Turing machine.
For a few decades, logicians sought to disprove the Church-Turing
thesis, but every attempt failed. Thus, the default intellectual position
is that the Church-Turing thesis is plausible, and it continues to gain
in plausibility as the years go by; the longer it hasn’t been disproved,
the more plausible it becomes. A veritably Borgesian state of affairs: we
know that we don’t know and even know precisely that we might never
know.

This, then, is the milieu of the Turing machine, the dizzying maze of
ideas it inhabits: a welter of halts, non-halts, infinite loops and regresses,
computations, equivalences, incompletions, logical indecisions, definitive
answers, and potentially eternally unknown truths. These ideas formed
part of the Zeitgeist of the 1930s, and while they would not have
appeared in any popularization of mathematics, it is probable they entered
the general intellectual discourse of the era, and therefore possible that
echoes reached Borges.1 Regardless of Borges’ conscious knowledge,
I propose the following homomorphic mapping: librarians to Turing
machines.

A librarian is constrained to move from one room to another. As
a careful reading of the description of the Library indicates, a passage
through the hexagons on any given floor constitutes a path which allows
only the possibility of forward or retrograde motion. (It doesn’t matter
that the librarian can take stairs up or down; it’s been demonstrated that
Turing machines with multiple tracks and switchings are equivalent to
the one-track version.) Each room is filled with a particular collection of
symbols from a finite alphabet, which the librarian reads. The librarian,
depending on the librarian’s internal state and the books in the hexagon,
may then either
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� Erase the symbol in the square; that is, for example, throw the
books down the airshaft.

� Write a new symbol—from the finite alphabet—in the square; that
is, either reorder the books in the hexagon, move books from
hexagon to hexagon, or actually, as the narrator of the story states,
inscribe symbols on the flyleaf or in the margins of a book.

� Change to a new internal state; that is, the librarian can go to the
bathroom or go to sleep. Or, perhaps the librarian has a revelation
and by acquiring new ideas, moves to a new cognitive view of the
world. Or even simply that the librarian’s mood changes.

� Move to the left one square or move to the right one square; that
is, move to a new hexagon.

� Halt permanently; that is, expire.

The librarian’s life and the Library together embody a Turing machine,
running an unimaginable program whose output can only be interpreted
by a godlike external observer.

A user.

A reader.
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Critical Points

In the mountains of truth you will never climb in vain: either you will
already get further up today or you will exercise your strength so that you
can climb higher tomorrow.

—Friedrich Nietzsche, Maxims, aphorism 358

z CR I T I C A L P O I N T i s a term that has as sumed a

host of meanings in mathematics. Generally, it denotes a
location where typical behavior breaks down and unusual and interesting
phenomena occur. In the qualitative study of the solutions of differential
equations, some critical points are singularities where flow lines of solu-
tions may converge from many different regions and then, regardless of
initial proximity, shoot off in a variety of divergent directions. This seems
an apt metaphor for critical perspectives arising from the interpretation of
a literary work.

Taking advantage of Nietzsche’s metaphor, at the base, mountains
offer a multiplicity of approaches towards the summit. Frequently these
trails converge to several natural routes, and oftentimes the descent
must be taken via an unexpectedly different path. Thus it is no sur-
prise that in my quest to read all commentaries by critics on “The
Library of Babel,” I learned that many predecessors have independently
climbed and descended the mountain, some along paths with sections
that closely parallel mine. This chapter is devoted towards outlining
some of these trails. In particular, I am restricting myself to those that
involve mathematics in one form or another. I begin by acknowledging
those who independently found some of the same mathematics in the
story.
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The eminent mathematician and pioneer German science fiction
writer, Kurd Lasswitz, in his 1901 story “The Universal Library,” not
only calculates the number of books in his universal library, but also
mentions that filling our known universe with books barely dents the
total. As mentioned in the first endnote to chapter 1, Amaral, Rucker,
Nicolas, Faucher, and Salpeter all calculate the number of books in the
Library, while Bell-Villada excerpts a passage from Gamow’s One, Two,
Three. . . Infinity that shows he has a notion of how such a calculation
should be performed.

While looking for a reference, for the interested reader, to the topol-
ogy and cosmology of the Library presented above, I discovered that in
their 1999 article “Is Space Finite?,” Luminet, Starkman, and Weeks listed
“The Library of Babel” as a suggestion for further reading. At least one
of them must have thought about the topology of the Library. Floyd
Merrell also speculates about the topology of the Library and briefly
discusses the possibility of a catalog, albeit mostly in the context of
space-time physics, when he talks about light-cones for librarians and
their world-lines, which are infinitesimal by contrast to the size of the
Library. Furthermore, inspired by work of Bernadete, Merrell includes
a brief discussion of a Book of Sand that is similar in spirit to my first
interpretation.

Whereas I have mainly sought to elucidate the mathematics in the
story, most commentators endeavor to use mathematics to create a frame-
work of analysis of the story and, more generally, Borges’ oeuvre. It
strikes me as an interesting philosophic pursuit to examine the project of
importing mathematical and scientific terminology and systems into the
field of literary analysis. I recuse myself from this study on the grounds
that I am professionally neither a philosopher nor a critic. I am, however,
qualified to comment on the correctness of the mathematics brought to
bear on Borges, and, by dint of careful and extensive reading of Borges,
to agree or disagree with various other interpretations of “The Library of
Babel.”1

Given that literary critics mount defensible arguments for the primacy
of interpretation over authorial intent, why should we worry whether
or not a critic’s use of mathematics is perfectly correct? By way of an
answer, consider the following hypothetical misreading of Borges. The
not-so-eminent critic William Goldbloom Blockhead, my not-so-bright
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alter ego, has confused “South America” with “South Africa.” After all,
they sound similar and are both, more or less, continents. Blockhead’s
stirring postcolonial analysis of Borges’ work raises new and disturb-
ing questions. For example, Blockhead wonders why Borges wrote in
Spanish in lieu of English or Afrikaans, declines to mention apartheid,
and exercises narrative space on Argentine border and independence
wars rather than the Boer War and World War I. Does this mean
that Borges’ own political views must be coded, rather than overtly
expressed? Next, Blockhead points out that the virtual invisibility of
Africans in Borges’ writing is a strong sign that, in fact, race is his most
important agenda—what else could explain such an egregious omission?
Blockhead’s analysis triumphantly concludes with the unique insight that
this interesting homme de lettres employs these strategies to avoid the
literary trap of being read as merely a colonist writing in and about a
colony.

It’s conceivable that some of Blockhead’s remarks may be of inde-
pendent interest, and some may even apply to Borges—after all, there
are some real political and historic parallels between Argentina/Spain
and South Africa/England. Nevertheless, one may well feel an irre-
sistible urge to ignore wholesale the stream of mistaken inferences fol-
lowing from Blockhead’s wrong assumption. Seen in this light, then,
I offer bouquets of refractions arising from the light of other critic’s
works.

S

Sarlo, in Jorge Luis Borges: A Writer on the Edge, tellingly sees the Library
as a symbol of political oppression in the milieu of a totalitarian state. The
librarians are, in today’s vernacular, information serfs who will never be
able to acquire the necessary data to transform their status. She writes
that

Structurally, the Library is also a panoptic, whose spatial distrib-
ution of masses and corridors allows one to see every place in it
from any of its hexagons. The panoptic design of the Library
brings to mind that of a prison where the guards should be
able to see any cell from every possible perspective. Foucault has
studied this layout as a spatialization of authoritarianism, as an
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image of a society where total control is possible and no private
place (no private thought) is admitted. The universe described
as the Library lacks any notion or possibility of privacy: all the
activities are, by definition, public.

The mental exercise implicitly asked now of the Reader is to imagine
oneself in the Library and intuit the sensory and emotional experience:
Is it dimly or brightly lit? Are the books musty or shockingly pris-
tine? Would the airshafts induce a tremendous vertigo or could they
be overlooked? Do the spiral staircases, placed either at every entrance
or every other entrance, hem librarians as do the bars of a cage, or are
they comforting mileposts along their life paths? Are there doors on
the small rooms designed for sleeping and physical necessities, or have
the librarians grown up accultured to a different kind of privacy than
us?

Once we establish our imagination in one of the hexagons, we see
that the Library is not panoptic; the only available line of sight is in the
air shaft central to the hexagon. Short of sticking a head into the airshaft
while looking up or down, only a few hexagons would be visible before
the convergence forced by the rules of perspective would hide all but a
small part of the floors and ceilings.

Furthermore, as discussed in the chapter “Geometry and Graph The-
ory,” it isn’t clear what the sight lines are like on an individual floor;
hexagons may be arranged in a straight line, or the entrances of the
hexagons may well curve around nonlinearly. The most extensive vision
afforded by the structure of the Library, then, would be a hexagon
at the intersection of a cross formed by its airshaft and a straight-line
corridor. However, even if a passage ran straight, the spiral staircases
would block the views. By contrast, Bentham’s Panopticon, as described
in Foucault’s famous work Discipline and Punish, enables full-time viewing
of all inhabitants by obscured central scrutinizers: an altogether different
geometry.

Sarlo also writes that “the infinity of the Library cannot be empirically
experienced, even if a traveller were granted infinite time.” Even if the
Library extends forever in the manner of Euclidean 3-space, there is a
nifty way to see that the whole Library may, in fact, be visited. First,
we make the reasonable assumption that the architecture of the Library
allows all adjacent hexagons to be visited. Now, imagine starting in
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any hexagon, which we may now consider to be the Origin of the
Library.

1. Begin at the Origin and visit every hexagon adjacent to the
Origin on the same floor as the Origin. Proceed up one floor
and pass through all the hexagons on this floor that are above a
previously visited hexagon. Now, go down two floors to the
floor below that of the Origin and visit every hexagon on this
floor that is below a previously visited hexagon. It is the case
now that every hexagon a “distance” of one hexagon from the
Origin has been visited.

2. Next, beginning on the floor of the Origin, visit every hexagon
adjacent to a previously visited hexagon. Hence, on the floor of
the Origin, all hexagons within two hexagons of the Origin
have been visited. Now use the spiral staircases to proceed up
one and two floors and visit all the hexagons on them that are
above a previously visited hexagon. Next, go down one floor
below the Origin, then two floors below the Origin, and do
the same. Note that every hexagon a “distance” of two
hexagons from the Origin has been visited.

3. Next, again starting on the floor of the Origin, visit every
hexagon adjacent to a previously visited hexagon, then proceed
up one and two and three floors, visiting all the hexagons on each
of these floors that are above a previously visited hexagon. Do
the same for the one, two, and three floors below the floor of
the Origin, and it follows immediately that every hexagon a
“distance” of three hexagons from the Origin has been
visited.

4. Etc.

If this hexagon-visiting algorithm is carried out, it is not hard to see that
at any stage, only a finite number of hexagons have been visited, and a
traveler granted infinite time must eventually visit every single hexagon.
This last assertion follows because even if the Library extends infinitely
in all directions, it still must be the case that any hexagon in the Library
is fixed at a finite number of hexagons from the Origin—the hexagon in
which the traveler began.

S
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Although he never explicitly mentions “The Library of Babel,” I include
a discussion of Svend Østergaard because I believe the book proposed
in the final footnote of “The Library of Babel” is of a similar structure
to the book described in Borges’ short story “The Book of Sand.” In
The Mathematics of Meaning, Østergaard discusses the Book of Sand, but
proceeds under the unwarranted assumption that it possesses uncountably
infinitely many pages.2

I find it unlikely that there are uncountably many pages, for
the narrator of “The Book of Sand” only mentions the finding of
integer-numbered pages: if that was so, it would be extraordinary to
find even a single page numbered by an integer, because the likelihood
of randomly finding an integer in the real number line is zero—or if
that sounds improbably absolute, “vanishingly small.” This is because
the set of integers is countable and therefore, when considered as a
set contained inside of the real numbers, it is of measure 0. This
entails that any integer is much harder to find than a single prespecified
dust speck adrift in South America. (See my second interpretation of
the Book of Sand in the chapter “Real Analysis” for a discussion on
measure 0.)

This is essentially the reason that while the narrator for “The Book
of Sand” is looking at a particular page, the mysterious stranger adjures
him to “Look at it well. You will never see it again.” The probability of
randomly picking the same integer twice is also vanishingly small. To see
this, imagine opening the Book of Sand to page 17. If there were only 100
pages in the Book, each time it was opened again there would be a 1/100
chance of randomly opening it to page 17. If there were 1,000 pages, there
would be a 1/1,000 chance. If there were a million pages, there would be
a 1/1,000,000 chance. If there were infinitely many pages, it is tempting
to write that there would be a 1/∞ chance, meaning “probability 0.” But
it wouldn’t be correct to write that, and the story of the probability, while
interesting and exciting, is beyond the scope of this book. (If the stranger
and narrator were truly interested in seeing a page a second time, it’s fair
to wonder why they didn’t simply insert a cardboard bookmark to reenter
this bookish Heraclitean river twice.)

Moreover, the narrator of “The Book of Sand” states that illustrations
occur every 2,000 pages. If there were uncountably many pages—that is,
the same number of pages as there are of points in the real number line—
then there would be no way of counting the number of pages between
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two selected pages. In fact, there’d be no way to find a “next page,”
for in the real number line, numbers lap up against each other with no
“closest” number. This is known, in various guises, as the Archimedean
property.

S

I have great sympathy for the last two critics I’m going to discuss, N.
Katherine Hayles and Merrell; their project, as I understand it, is truly
noble. They seek to create or expand upon a theory which accounts
for all the complex interrelations between the perceivable universe, con-
sciousness, all previous and current human works, the Zeitgeist, culture,
language, author, text, interpretation, and reader. Such a theory would,
by virtue of absorption, dwarf a Grand Unified Theory of Everything
from physics. It is natural, therefore, that two literary critics, steeped in
the disciplines of chemistry and physics, would appropriate the language
and approaches of mathematics and science to employ them in this most
ambitious theory.

Hayles’ work (Hayles, 138–67) primarily consists of associating ideas
of self-referentiality and infinite sequences, infinite series, and infinite sets
to Borges’ work. Many of her insights are deep. Although some passages
seek to persuade the reader of the meaninglessness and marginalization
of mathematics, Hayles is content to use mathematics as a means for
understanding Borges, perhaps in the same way a sponge, riddled with
holes, is useful in sopping up fluid reality.

After a précis of the story, on page 151 Hayles critiques the librarian’s
“elegant hope” by noting that “the narrator’s ‘solution’ is of course
an answer only in a very narrow sense. While it suggests a way to
transform randomness into ordered sequence, it contains no hint of
how that sequence may be rendered intelligible or meaningful.” As I
noted in the chapter “Topology and Cosmology,” the patterning of a
periodically repeating Library may be thought of as symmetric three-
dimensional wallpaper. For example, the illustration in figure 67 is, in
some sense, random and chaotic. However, when it repeats periodically,
it takes on a pleasant enough symmetry; an order, if you will (figure 68).
I contend again that this is the Order that in-formed the narrator’s
out-look.
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figure 67. A random, chaotic
sketch.

Hayles’ main intent, in her reading of “The Library of Babel,” is
poetic: she wants a Borgesian “Strange Loop” to dissolve the boundary
between the reader and the text by roping the reader into the story itself.
However, to accomplish this lyrical agenda, Hayles writes on page 152
that “Logic demands that we conclude the present text in hand (which of
course is printed) to be the Library’s book. What we have is not the
narrator’s handwritten text but a mirror of it, or perhaps one of the
‘several hundreds of thousands of imperfect facsimiles.”’ It is curious that
a critic eager to limit logic should invoke it almost as a magic amulet, for
“logic” doesn’t “demand” anything. Rather, it seems to me that Hayles
is attempting to have her theory of Strange Loops produce a variation of
a result that Borges himself stresses in the story, “This useless and wordy
epistle already exists in one of the thirty volumes of the five shelves in
one of the uncountable hexagons—and so does its refutation.” The story
is in the Library, the book it originally appeared in, Ficciones, is in the
Library, and the complete works of Borges are in the Library. Hayles’
books, the words of this book, and anything that can be written using

figure 68. Wallpaper formed by periodically repeating a random,
chaotic drawing.
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25 orthographic symbols: all are necessarily in the Library. Nevertheless,
none of these inclusions implies that we are at this moment reading a
Library book or that we are librarians roaming a universe of hexagons.

If we can legitimately assume as a premise that we are holding a Library
book in our hands, then Hayles’ next set of ideas, which are intriguing,
do follow: “. . . even more important is the implication that we are reading
the Library’s book. This, in turn, implies that we, like the narrator, are
within the Library examining one of its volumes, which means that we,
no less than the narrator, are contained within one of the books we
peruse.” Since the premise is unfounded—my copy of Ficciones is not
410 pages, I’m not in a dimly lit hexagon—the chain of implications
does not follow.3 If, on the other hand, Hayles was referring to a sort of
narratological space created by the story, where we readers accept that by
virtue of reading the story we are somehow in the story’s confines, then it
still doesn’t follow that we are reading a printed text of the Library rather
than a handwritten note of an avuncular librarian. In fact, given that we
are human, inhabiting a miniscule section of the Library where humans
reside, it is vastly more likely that we would stumble across a book which
a human has inscribed than one which contains the story “The Library
of Babel.”

The story, including spaces, is comprised of approximately 18,000 lex-
ical symbols. These contiguous 18,000 symbols could occupy 1,294,001
different starting positions in a 410-page book. To see this, observe that
the first such position would entail that the first symbol of the story
occupied the first slot of the book’s 1,312,000 slots. The last such position
has the concluding period of the story occupying the last slot in the book.
This entails that the first symbol of the story occupies the 1,294,000th
slot. It may be helpful to visualize this process as a block of 18,000 red
squares moving along a tape of 1,312,000 slots. If the first red square is at
the first slot, then the last red square is at the 18,000th slot. If the last red
square is at the last slot, then the first red square is at the [(1,312,000 −
18,000) + 1]th slot.

If we remind ourselves of the work we did in the chapter “Combina-
torics,” we see that the number of books containing the story at a specific
starting position is the number of different ways the slots not occupied by
the story can be filled. The number of unfilled slots is

251,312,000−18,000 = 251,294,000.
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From the first paragraph of this note, we see there are 1,294,001 such
positions; thus there are approximately

(1,294,001) · (251,294,000)

distinct books in the Library containing the story. So the probability of
finding a Library volume containing the story is

(books we care about)
(total number of books)

=
(1,294,001) · (

251,294,000
)

251,312,000

=
1,294,001

2518,000
,

which, in turn, is approximately

1
1025,157

.

This is roughly equivalent to the likelihood of winning a major lottery
3,600 times in succession!

There is, however, a profound sense in which Hayles is correct, a sense
that Borges explicitly intended. You are in the Library. A multivolume set
is scattered throughout the Library that details every single day of your life,
including your death. In fact, a multi-quintillion volume set that details
the lives, deaths, and protein transfers of each and every one of your cells
is also scattered throughout the Library.

By invoking this theme in conjunction with the idea of potential
inaccuracies of a particular volume, Hayles opens the door to a stimulating
line of thought. Suppose, miraculously, you were to find a grouped set of
volumes, each of which had one page dedicated to one day of your life.
Every single page, as far as your memory can recall and corroborate, is
an accurate portrayal of that day. You read the page that corresponds to
tomorrow. At the end of the next day, you reread the page: it, too, turns
out to be an accurate description of the day. You continue this process for
years; unimaginably, and despite your perverse and whimsical attempts to
subvert their accuracy, the books continue to meticulously depict your
days.

Here’s the question: can you now say, with certainty, that the page
that corresponds to today’s tomorrow will also be accurate? No! Based on
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the number of books in the Library and the number of ways in which
the description may be inaccurate, despite the long streak of accurate
descriptions, it is almost a certainty that the book will deviate. This is a
disturbing and counterintuitive conjunction of probability with the com-
prehensiveness of the Library, yet it is unavoidable. Perhaps this example
might help clarify the point. Suppose you flipped a fair coin 15,000 times,
which is about once a day for 40 years, and it always came up heads. If
you flipped the coin tomorrow, would you expect it to be heads or tails?
Of course you’d expect it to be heads again—but if it’s a fair coin, there’s
an equally likely chance it will be tails! A closer correspondence to the
probabilities associated with such a book might be: suppose that every
day for the past 20 years, you’ve won the big jackpot of the daily lottery.
Do you believe you’ll win tomorrow, too? The odds are tremendously
against it, but then again, the odds were even more incredible against
your winning every day for 20 years. How can you rationally assess
tomorrow?

S

Merrell’s book, Unthinking Thinking: Jorge Luis Borges, Mathematics, and the
New Physics, is the most comprehensive attempt to link ideas of modern
mathematics, physics, and philosophy with Borges, via the critical tools
of literary analysis. As such, Unthinking Thinking contains a number
of interesting insights and juxtapositions. For example, Merrell offers
unique perspectives on the structure of the Library as seen through
the lenses of the theory of special relativity and the expanding universe
theory.

I think Merrell makes solid contributions in two areas. I particularly
enjoyed his thoughts regarding enantiomorphic (mirror-reversed) forms.
He provides a nice discussion of mirror-reversal in the Möbius band
and applies his notion imaginatively to the “problem” of mirrors in
the Library, especially in reference to his relativistic “world-lines” of
librarians.

Second, Merrell gives four arguments for the impossibility of deriving
a global order of the Library from the local information that a librarian
would have available. Merrell’s arguments run the gamut from intertextual
references to Borges’ story “Averroes’ Search” to an appeal to authorities
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on probability; in particular, Spencer-Brown and the astronomer Layzer,
as quoted in Campbell.

Here is a concrete way of thinking about this problem. Suppose I
provide you with a rule to generate a sequence, something such as “Start
with the two numbers 0, 1. Forever after, employ Rule Fib.”

Rule Fib: The next number in the sequence is defined to be the sum of
the preceding two numbers.

Rule Fib entails that to find the third number, you must add the first two
numbers:

0, 1, 0 + 1 = 0, 1, 1.

To get the fourth number, you add the second and third terms, 1 + 1,
and get:

0, 1, 1, 2.

To get the fifth number, you add the third and fourth terms, 1 + 2, and
get:

0, 1, 1, 2, 3.

The sequence—actually a famous sequence, known as the Fibonacci
sequence—begins to grow rapidly:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

Given time and inclination, you or a computer could generate many
numbers of this sequence. Conversely, if I provided you with the sequence
above, you might well guess the rule that produces “the next term.”
However, the rule might be much more complicated; for example, it
might be: “Let the first 12 terms correspond to the Fibonacci sequence;
let the next 12 be the first 12 digits in the decimal expansion of ; the 47
digits after that should all be 7s; etc. etc. etc.” Given a more complicated
rule such as this last one, although your guess is “good,” it relies on the
false assumption that the rule generating the sequence must be as simple
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figure 69. The first seven terms

of the Fibonacci sequence are dis-
tributed in a hexagonal pattern.

How should the next 12 terms be
placed?

as possible. This has the unfortunate effect that your good guess produces
the wrong answer. I conclude that without complete information, there
is no way to ensure the successful induction of a unique generating-rule
for a sequence.

The problem is much worse in higher dimensions. The example of the
Fibonacci sequence is one-dimensional; now let’s look at one example
of the “guessing-of-terms” problem in a two-dimensional setting. The
numbers in the hexagonal array pictured in figure 69 are the first seven
terms of the Fibonacci sequence, and let’s imagine that all the digits to
fill out the plane are exactly those appearing in the Fibonacci sequence.
But how are the next twelve terms to be ordered? Your guess is as
good as mine: There are a vast number of distribution rules utilizing
the Fibonacci digits which would produce the pictured hexagonal array.
Now imagine a librarian’s dilemma, confronting 410-page collections of
seemingly random lexical symbols—not even numbers—distributed in
some sort of three-dimensional lattice. The mind balks at conceiving of
any rule to order the books.

A final pair of observations that fit this chapter best. First, Borges
introduces the belief of the Book-Man.

We also have knowledge of another superstition from that
period: belief in what was termed the Book-Man. On some
shelf in some hexagon, it was argued, there must exist a book
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that is the cipher and perfect compendium of all other books, and
some librarian must have examined that book; this librarian is
analogous to a god.

A cipher is either a key or a code, and a compendium is, according to
various dictionaries, a brief, a condensation, an epitome, or an abstract.
My guess is that Borges meant that since it is possible to conceive of
a book 410 pages in length that is a key to and an abridgement of
the Library, that book must therefore exist in the Library. Such a book
might, in today’s parlance, be a computer algorithm for generating all
possible symbol sequences of length 1,312,000 from an alphabet of 25
orthographic symbols, for such an algorithm could actually be written
in just a few lines of code. More of the Book might be devoted to
the generating principles and topology of the Library; possibly a rule
for ordering the books (although probably no such rule could fit in
one volume); the motivations of the constructors of the Library; how
the Library was built and where the materials for it came from; how
librarians entered the system; etc. etc. Since such a book can be con-
ceived, the import of Borges’ footnote is precisely that it must appear
in the Library. Of course, its refutations also exist in the Library, a
fact that highlights and compounds the problem of interpretation of
truth.

Second, many critics, including some of those mentioned here, have
speculated about the meaning and significance of one of Borges’ paren-
thetical asides in the story:

(Mystics claim that their ecstasies reveal to them a circular
chamber containing an enormous circular book with a con-
tinuous spine that goes completely around the walls. But their
testimony is suspect, their words, obscure. That cyclical book is
God.)

I won’t presume to provide an exegesis of the cyclical book, but I offer
the following insight for a future critic who might wish to interpret it: I
believe that again Borges is winking at the reader.

It would be impossible to remove such a book from the shelf!
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The only way to read the book would be to physically cut out sections; in
other words, the only way for the mystics to attain the Book that is God
would be to destroy It. The Book is closed (figure 70).

·th
e·book·is·god·is·the·book·is·god·is·

figure 70. The cyclical Book.
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Openings

To open a book brings profit.
—Chinese proverb

z I n th i s chapter , i a s s emble some facts for the

purpose of sketching a picture of the mathematics Borges
may have known and how it may have affected the story. In his prologue
to the first part of Ficciones, Borges winks yet again at the reader when
he writes “I am not the first author of the narrative titled ‘The Library
of Babel’; those curious to know its history and its prehistory may
interrogate a certain page of Number 59 of the journal Sur, which records
the heterogenous names of Leucippus and Lasswitz, of Lewis Carroll and
Aristotle.” This is precisely the issue of Sur in which his essay “The Total
Library” appears.1

Perhaps few others have had the patience to ferret out the particulars
of a hint of Borges’ knowledge of combinatorics. Borges opens the story
with the following fragment from Burton’s The Anatomy of Melancholy:
“By this art you may contemplate the variation of the 23 letters. . . ” The
entire section of Burton is concerned with ways of diverting and amusing
oneself, ostensibly towards the end of avoiding or curing melancholy.2 For
several pages before the excerpt, Burton waxes erudite on the pleasures
of reading, especially scripture, and of libraries. Without even a paragraph
break to ease the transition, Burton moves to pleasures mathematical
(emphasis added):

I would for these causes wish him that is melancholy to use
both human and divine authors, voluntarily to impose some task
upon himself, to divert his melancholy thoughts: to study the
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art of memory, Cosmus Rosselius, Pet. Ravennas, Scenkelius’s
Detectus, or practise Brachygraphy, &c., that will ask a great deal
of attention; or let him demonstrate a proposition in Euclid, in
his last five books, extract a square root, or study Algebra; than
which, as Clavius holds, “in all human disciplines nothing can
be more excellent and pleasant, so abstruse and recondite, so
bewitching, so miraculous, so ravishing, so easy withal and full
of delight,” omnem humanum captum superare videtur. By this means
you may define ex ungue leonem, as the diverb is, by his thumb
alone the bigness of Hercules, or the true dimensions of the
great Colossus, Solomon’s temple, and Domitian’s amphitheatre
out of a little part. By this art you may contemplate the variation of
the twenty-three letters, which may be so infinitely varied, that the words
complicated and deduced thence will not be contained within the compass
of the firmament; ten words may be varied 40,320 several ways; by this
art you may examine how many men may stand one by another
in the whole superficies of the earth . . .

It’s worth mentioning that the number of distinct ways to order eight
words is

8! = 40,320.

Perhaps Burton had neither the skill nor the stomach to continue multi-
plying 40,320 by 9 and then again by 10, which would yield 3,628,800,
the number of different ways to order 10 words. Whether or not Borges
would have recognized this number is moot, yet in his 1936 essay “The
Doctrine of Cycles,” he correctly calculates the number of ways that the
order of 10 atoms can be permuted.

Regardless, he was aware that the passage alluded to combinations
and permutations, and that “the words complicated and deduced thence
will not be contained within the compass of the firmament.” Later in the
story, Borges’ use of the phrase “the rudiments of combinatory analysis,
illustrated with examples of endlessly repeating variations” shows that
Borges understood the ideas well, even if a modern mathematician would
more likely employ the phrase “variations with unlimited repetition.”

Beyond gleaning the story and Selected Non-Fictions for clues about his
knowledge and predilections, I was fortunate to find another source of
information. The chapter title, “Openings,” stems from an intersection of
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optimism and pseudo-randomness. While visiting the National Library of
Argentina, I had the great pleasure of perusing the math and science books
Borges donated to the collection. I applied the principle that a book
beloved by its owner, when held gently underneath the spine and allowed
to fall open, will naturally reveal an oft-consulted page. My excitement
at achieving interesting results was matched by my chagrin when, after
multiple applications of this “opening” principle, I discovered that Borges
marked the back end leaves of his volumes with his name, the year of
acquisition, and the page numbers—coupled with a succinct phrase—of
passages that especially interested him. My chagrin was tempered by the
fact that his annotated page numbers unmistakably corresponded with my
optimistic openings.

I’ll begin with a book that postdates “The Library of Babel,” one that
evinces that Borges hadn’t lost interest in the idea of the Library. In 1949,
Borges acquired Russell’s Human Knowledge: Its Scope and Limits. One of
his three annotations on the end leaf is “Eddington’s monkeys.” Here is
the passage from page 484 (emphasis added):

Eddington used to suggest as a logical possibility that perhaps all
the books in the British Museum had been produced acciden-
tally by monkeys playing with typewriters.3 There are here two
kinds of improbability: in the first place some of the books in
the British Museum make sense, whereas the monkeys might
have been expected to produce only nonsense [. . . ] Suppose you
have in your hands two copies of the same book, and suppose
you are considering the hypothesis that the identity between
them is due to chance: the chance that the first letter in the two
books will be the same is one in twenty-six, so is the chance
that the second letter will be the same, and so on. Consequently
the chance that all the letters will be the same in two copies of a book of
700,000 letters is the 700,000th power of 1

26 .

Russell derives a viewpoint complementary to that of the Library. If there
are 700,000 letters per book and an alphabet of 26 letters, then the total
number of books is 26700,000. Therefore, the probability of picking a book
that exactly matches another is one in 26700,000; that is

1
26700,000

=
(

1
26

)700,000

.
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Many commentators have pointed towards Borges’ amiable review of
Kasner and Newman’s Mathematics and the Imagination as an indication
of his interest in mathematics and also as a source of his knowledge.
Unfortunately, it was not among the books from his personal library that
were donated to the National Library. However, I was able to obtain a
copy elsewhere and give it a professional reading. (An evocative aspect
of the book is that the cover, as opposed to the dust jacket, is embossed
with an aleph-nought, ℵ0 , which was Cantor’s symbol for a countably
infinite set.4) Borges’ review, reprinted in Selected Non-Fictions, notes that
the book includes

. . . the endless map of Brouwer,5 the fourth dimension glimpsed
by More and which Charles Howard Hinton claims to have
intuited, the mildly obscene Möbius strip, the rudiments of the
theory of transfinite numbers, the eight paradoxes of Zeno, the
parallel lines of Desargues that intersect in infinity, the binary
notation Leibniz discovered in the diagrams of the I Ching,
the beautiful Euclidean demonstration of the stellar infinity of
the prime numbers, the problem of the tower of Hanoi, the
equivocal or two-pronged syllogism.

Most surprising to me, given that many today attribute an interest in
fractals to Borges, is that Kasner and Newman’s book examines the famous
Koch snowflake curve in some depth on pages 344–55. The snowflake
curve is a standard introductory example of a fractal—and for historical
context, I mention that Kasner and Newman’s discussion precedes the
term “fractal” by almost 40 years. Apparently, though, Borges was suffi-
ciently unimpressed by the snowflake curve that he neglected to mention
it in his review.

Perhaps Borges found the anti-Nazi gibes another appealing facet
of the book, given his own strong—and unpopular—anti-Nazi stance
during World War II. Despite these many commendable contents and
qualities, given that the book was published in 1940, it seems unlikely that
it was available for his consultation and degustation prior to the writing
of “The Library of Babel.”

There are at least two candidates from Borges’ personal library to
which it is tempting to assign influential status in the development
of his mathematical thought. The first is Henri Poincaré’s 1908 book
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Science et Méthode. Borges’ end leaf notations, dated 1939, indicate an
interest in Lesage’s discredited theory of gravitation and, more tellingly,
in geometry and Cantor. One paragraph, taken from pages 380–81, is a
passage on geometry worth quoting (emphases added):

A great advantage of geometry lies in the fact that in it the
senses can come to the aid of thought, and help find the path
to follow, and many minds prefer to put the problems of analysis
into geometric form. Unhappily, our senses can not carry us
very far, and they desert us when we wish to soar beyond the
classical three dimensions. Does this mean, beyond the restricted
domain wherein they seem to wish to imprison us, we should rely only
on pure analysis and that all geometry of more than three dimensions
is vain and objectless? [. . . ] We may also make an analysis situs of
more than three dimensions. The importance of analysis situs is
enormous and can not be too much emphasized; the advantage
obtained from it by Riemann, one of its chief creators, would
suffice to prove this. We must achieve its complete construction
in the higher spaces; then we shall have an instrument which will
enable us really to see in hyperspace and supplement our senses.

Again, I don’t imagine that Borges considered exotic cosmologies for the
Library, but it interests me to think that he was aware of things living in
higher-dimensional spaces.

The sections pertaining to Cantor mainly restrict themselves to exu-
berant denunciations of set theory via what Poincaré terms “the Canto-
rian antinomies”—paradoxes arising from Cantor’s theory of transfinite
numbers. In many ways, Poincaré prefigures a movement towards con-
structivism in mathematics, which I briefly discuss in the Math Aftermath
“Libits, Uniqueness, and Jumping from the Finite to the Infinite.” Since
Borges was evidently fascinated by transfinite numbers and the concept of
infinity, it’s striking that as an autodidact, he pursued the arguments and
weighed the objections of Poincaré, a formidable opponent of all things
infinite.

The other book from Borges’ library, philosophically opposed to
Poincaré’s, is Bertrand Russell’s Principles of Mathematics. The book was
originally published in 1903, and Borges’ copy is a 1938 printing. Borges
dated his copy “1939,” and his annotations further indicate that it was
a gift from “Adolfo” (presumably his life-long friend, colleague, and
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coauthor Bioy Casares). The easiest opening of this volume, and the first
page singled out by Borges, concerns a resolution of Parmenides’ paradox.
The next page pleasantly segues into a discussion of Zeno’s paradox
of Achilles and the tortoise. The argument contained therein is similar
to Russell’s refutation in Mathematical Philosophy, which Borges outlined
in his 1929 essay “The Perpetual Race of Achilles and the Tortoise.”
Indeed, Borges’ annotation includes the phrase “(cf. Mathematical
Philosophy, 138).”

Borges’ essay on Zeno’s paradox not only betrays a fondness for
and knowledge of Cantor’s transfinite numbers; it also demonstrates that
Borges understood at least the basics of summing infinite series. That
Borges persisted in using Russell as a mathematical touchstone is further
evidenced by the brilliant 1939 essay “When Fiction Lives in Fiction,”
which appears in Selected Non-Fictions, pages 160–62. Here, Borges writes

. . . Fourteen or fifteen years later, around 1921, I discovered in
one of Russell’s works an analogous invention by Josiah Royce,
who postulates a map of England drawn on a portion of the
territory of England: this map—since it is exact—must contain
a map of the map, which must contain a map of the map of the
map, and so on to infinity . . .

Principles of Mathematics is rife with Russell’s perspectives on Cantor,
transfinite numbers, infinitesimals, the meaning of zero, and a host of
other Borgesian obsessions. Despite his cavil found on page 46 of Selected
Non-Fictions that some of Russell’s works are “unsatisfactory, intense
books, inhumanly lucid,” Borges returned to them again and again.
Russell’s book, although dry, discursive, and monolithic in conception
and execution, contains poetic phrases, one of which Borges singled out
with an end leaf notation:

. . . the infinite regress is harmless.

A point needs to be stressed. Mathematics is a body of lore and an
art that requires years of study and practice to understand and appre-
ciate. Just as with twentieth-century atonal music, repeated exposure is
required to acculturate the novice to the aesthetics of beauty and elegance
particular to mathematics. Grappling with problems and attempting to
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produce one’s own proofs using the licit logical structures are essential to
internalize an understanding of the many subtleties inherent in mathe-
matics. I contend that, in this sense, Russell’s books are not mathematics;
rather they are the philosophy of mathematics. Therein lay their appeal
to Borges, and that is why Russell, not Kasner and Newman, remained
Borges’ inspiration and touchstone of mathematical thought.

I’ll close the book with a last opening: Borges’ solitary annotation on
the end leaf of Kesten’s Copernicus and his World. There Borges inscribed
a Latin phrase from Copernicus’s De revolutionibus orbium coelestium and
referenced the page containing the English translation.

Mathemata mathematicis scribuntur. “On mathematics, you write
for mathematicians only.”

It is my hope that this book belies that sentiment.



Appendix—Dissecting the
3-Sphere

We sail within a vast sphere, ever drifting in uncertainty, driven from end to
end. When we think to attach ourselves to any point and to fasten to it, it
wavers and leaves us; and if we follow it, it eludes our grasp, slips past us, and
vanishes for ever. Nothing stays for us.

—Blaise Pascal, Pensées

The aim here is to see that three-dimensional slices of a 3-sphere are,
in fact, either points or 2-spheres. (We employed this notion in our
discussion in the chapter “Topology and Cosmology” when we relied
on lower-dimensional analogues to yield insight into the nature of the
3-sphere.) For those whose are interested in this kind of inquiry but
whose memory of the equations of spheres and circles is confined to
a misty past, we recommend first reading the second section of this
appendix, which carefully uses the Pythagorean theorem and the notion
of distance in Euclidean space to derive the analytic equations for a circle,
2-sphere, and 3-sphere.

A way to understand three-dimensional slices is to use the analytic
equation that defines the unit 3-sphere,

w2 + x2 + y2 + z2 = 1,

which should be understood as “the set of all points (w, x, y, z) in
coordinatized four-dimensional space that satisfy the above equation.” For
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example the point (1, 0, 0, 0) satisfies the equation, as do the points (0, 1,
0, 0) and (1/2, 1/2, 1/2, 1/2). For the latter point, note that

(
1
2

)2

+
(

1
2

)2

+
(

1
2

)2

+
(

1
2

)2

=
1
4

+
1
4

+
1
4

+
1
4

= 1.

If we fix w, the coordinate for the fourth dimension, at 0, the equation
becomes

02 + x2 + y2 + z2 = 1;

in other words, the equation of the standard unit 2-sphere. If we fix w = 1
(or −1) we are at the top or bottom of the unit 3-sphere, and the equation
becomes

12 + x2 + y2 + z2 = 1, which implies that x2 + y2 + z2 = 0.

The only way that three nonnegative numbers can add up to 0 is if they
themselves are all 0. In other words, the three-dimensional slice at the
coordinate w = 1 yields only the point (x, y, z) = (0, 0, 0).

On the other hand, let w be any number strictly between −1 and 1.
For a concrete example, let w be 1/2. Then the equation becomes

(
1
2

)2

+ x2 + y2 + z2 =
1
4

+ x2 + y2 + z2 = 1, which implies that

x2 + y2 + z2 =
3
4
.

By taking the square root of both sides, we arrive at

√
x2 + y2 + z2 =

√
3
4

=

√
3

2
,

and this is equivalent to the statement “the set of all points in three-
dimensional Euclidean space located at a distance

√
3/2 from the origin

(0, 0, 0).” In other words, the equation specifies a 2-sphere of radius√
3/2.
In the above argument, there was nothing special about letting w

be 1/2. We could have chosen any number strictly between −1 and
1, and we would again end up with an equation specifying a sphere.
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In general, let w = R, where −1< R <1. Then the examination of the
three dimensional slice at w = R is facilitated by the equation

R2 + x2 + y2 + z2 = 1, which implies that

x2 + y2 + z2 = 1 − R2.

By taking the square root of both sides, we arrive at

√
x2 + y2 + z2 =

√
1 − R2,

which is the equation for a 2-sphere of radius
√

1 − R2.

Deriving the Equations for Circles and Spheres
Via the Pythagorean Theorem

The Pythagorean theorem states that for a right triangle with legs of
lengths x and y and with hypotenuse of length h contained in a Euclidean
plane, the equation x2 + y2 = h2 always holds (figure 71). (There are
dozens, maybe hundreds, of proofs of this theorem.) If the length of the
hypotenuse is, say, 1/2, then the equation becomes

x2 + y2 =
(

1
2

)2

,

and taking the square root of both sides of the equation yields

√
x2 + y2 =

1
2
.

y

x

h
x2 + y2 = h2

Pythagoras:

figure 71. An illustration of the Pythagorean theorem.
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In fact, it follows instantly that if h is the length of the hypotenuse, then
Pythagoras implies

√
x2 + y2 = h .

Thus the key point is the realization that the length of the hypotenuse
is expressible in this form. Now, think of the bottom-left point of
the hypotenuse as the origin (0, 0) of the plane and reimagine the
lengths of the legs, x and y, as representing the horizontal and vertical
coordinates for the right-top point of the hypotenuse. Then the length
of the hypotenuse signifies the distance from the origin to the point
p = (x, y), and applying the Pythagorean theorem reveals the distance
to be

√
x2 + y2. See figure 72.

Now, we want to use these ideas in order to derive an equation equiv-
alent to Euclid’s intuitively satisfying definition of a circle. He defined a
circle to be the set of points in a plane that are equidistant from a given
point. If we set the given point to be the origin, and choose the distance
to be equal to one, then a circle is the set of all points (x, y) that satisfy
the equation.

√
x2 + y2 = 1.

After squaring both sides, we see that it must be the case that a unit circle
is precisely all points (x, y) that fit this equation:

x2 + y2 = 12 = 1.

origin = (0,0)

Distance from the
origin to the point p

= (x,y)p 

x

y

figure 72. Using Pythagoras to define distance
in the Euclidean plane.
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figure 73. Using the notion of
distance, hence Pythagoras, to

define a circle.

This is how the analytic equation for the circle arises, and figure 73
indicates a way of viewing a circle as a composition of distances from
the origin, that is, as hypotenuses of right triangles.

The equation for a 2-sphere is very similar in concept, and thus we
need only adapt our notion of distance—and therefore, the Pythagorean
theorem—to work in three-dimensional space. A standard way is a typi-
cally incisive mathematical maneuver which requires the clever use of the
Pythagorean theorem twice.

To see this, let’s find the distance from the origin (0, 0, 0) to the point
p = (x, y, z) in coordinatized 3-space. The point p naturally determines
a right triangle, with the first leg of the triangle being the line segment
contained in the x − y plane (for which z =0) that connects the origin to
the point (x, y, 0). The second leg is the vertical line segment connecting
the points p and (x, y, 0). The hypotenuse of this right triangle is the
distance we want—see figure 74.

Observe that the length of the leg that connects p to the point (x, y,
0) is simply the height, z. Since the other leg is contained in the x-y plane
for which z is constantly 0, at a critical juncture below we will ignore the
z coordinate and blithely apply the Pythagorean theorem as we did above
in the Euclidean plane. First, though, using the Pythagorean theorem on
the dark gray triangle in figure 74 gives

(
distance from origin to (x, y, 0)

)2

︸ ︷︷ ︸
first leg

+ (height z)2︸ ︷︷ ︸
second leg

=
(
distance from origin to (x, y, z)

)2

︸ ︷︷ ︸
hypotenuse
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x

y

Distance from the
origin to the point p

= (x,y,z)p 

z
}

Use Pythagoras in the plane to find the 
hypotenuse of the light gray triangle. 
Now, use this hypotenuse, along with the 
distance z, to find the hypotenuse of the 
dark gray triangle!

figure 74. Using the Pythagorean theorem twice to define
distance in 3-space.

Again, because the second leg of the dark gray triangle is the hypotenuse
of the light gray triangle in (essentially) the x-y plane, the Pythagorean
theorem allows us to replace “distance from origin to (x, y, 0)” with
“
√

x2 + y2 .” We also may think of “height z” as just “z,” and making
these substitutions transforms the previous equation into

(√
x2 + y2

)2
+ (z)2 =

(
distance from origin to (x, y, z)

)2
.

Squaring the square root in the first term of the above equation and
dropping the parentheses leaves us with

x2 + y2 + z2 =
(
distance from origin to (x, y, z)

)2
.

Taking the square root of both sides of the equation yields

√
x2 + y2 + z2 = distance from origin to (x, y, z).

One may now analytically define the unit 2-sphere in the same way
the circle was defined; it is the set of points (x, y, z) contained in 3-space
that all are of distance one from the origin. This translates into the fact
that the 2-sphere is the set of all points (x, y, z) that satisfy the distance
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equation

√
x2 + y2 + z2 = 1.

And thus, by squaring both sides, we arrive the analytic equation for the
2-sphere:

x2 + y2 + z2 = 12 = 1.

Generalizing these ideas to coordinatized four-dimensional Euclidean
space is similar—we need only adapt our notion of distance to 4-space.
We do this by again bootstrapping ourselves into a higher dimension by
cleverly using Pythagoras twice.

Let p = (w, x, y, z) be a point in 4-space—and notice this time that
the “new” coordinate is added in front of, rather than behind, the
previous coordinates. Once again, the point p naturally determines a
right triangle in 4-space (which unfortunately we are unable to draw)
with the first leg of the triangle being the line segment connecting the
origin to the point (0, x, y, z), and this segment is completely contained
in the x-y-z Euclidean 3-space for which the w coordinate is constantly
equal to 0. The second leg of the triangle is the line segment “vertically”
connecting (w, x, y, z) to (0, x, y, z); in other words, a leg of “height”
equal to w. The hypotenuse of the triangle connects the origin of 4-space
to the point p , and is the distance we want. So applying Pythagoras to
the right triangle yields

(height w)2︸ ︷︷ ︸
first leg

+
(
distance from origin to (0, x, y, z)

)2

︸ ︷︷ ︸
second leg

=
(
distance from origin to (w, x, y, z)

)2

︸ ︷︷ ︸
hypotenuse

The distance formula in three dimensions derived earlier allows us to
replace “distance from origin to (0, x, y, z)” with “

√
x2 + y2 + z2 ,” and

“height w” is simply equal to “w.” Making these substitutions transforms
the equation into:

(w)2 +
(√

x2 + y2 + z2
)2

=
(
distance from origin to (w, x, y, z)

)2
.
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Again, squaring the square root in the first term of the above equation
and dropping the parentheses leaves us with

w2 + x2 + y2 + z2 =
(
distance from origin to (w, x, y, z)

)2
.

Taking the square root of both sides yields

√
w2 + x2 + y2 + z2 = distance from origin to (w, x, y, z) .

The unit 3-sphere is the set of all points in 4-space uniformly a distance
one from the origin. This is equivalent to the set of all points (w, x, y, z)
satisfying the distance equation

√
w2 + x2 + y2 + z2 = 1,

and, after squaring both sides, we end up with

w2 + x2 + y2 + z2 = 12 = 1.
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Notations

The twentieth-century artist who uses symbols is alienated because the system
of symbols is a private one. After you have dealt with the symbols you are still
private, you are still lonely, because you are not sure anyone will understand it
except yourself.

—Louise Bourgeois, quoted in Lives and Works

a ≈ b This says that for our intents and purposes, we can think of a
as being roughly equivalent to b : “a is approximately b .”

a × b One way of signifying the product of a with b ; that is, a way
of notating the act of multiplying a by b .

a · b Another way of signifying the product of a with b ; that is,
another way of notating the act of multiplying a by b .

n! Read “n factorial,” and
n! = n · (n − 1) · (n − 2) · (n − 3) · · · · · 3 · 2 · 1.

a b The integer a raised to the b th power, for example,
35 = 3·3·3·3·3 = 729.

[a , b ] The closed interval between a and b. All numbers between
a and b, inclusive.

∞ A symbol for infinity. It’s important to note that although ∞
connotes a kind of magnitude, and is sometimes shorthand
for the idea of “arbitrarily large number,” the symbol ∞
is not a number.
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Notes

The end crowneth the work.
—Elizabeth I, quoted in The Sayings of Queen Elizabeth

The end crowns all;
And that old common arbitrator, Time,
Will one day end it.

—William Shakespeare, Troilus and Cressida

Preface

1. Did you look?

Chapter 1

1. For example, Lasswitz, who wrote “The Universal Library,” which profoundly
influenced Borges, calculated the number of books in his Library. Other
mathematicians and critics who find the number of books include Amaral,
Bell-Villada, Rucker, Nicolas, Faucher, Salpeter, and the anonymous encyclo-
pediasts who wrote the page found at Wikipedia.org! Amaral deserves special
plaudits for finding influences of Lasswitz’s “The Universal Library” in the
work of Lasswitz’s mathematical contemporaries Kummer, Fraenkel, pp. 7ff,
and Hausdorff, pp. 61ff.

2. The quote below appears in Borges’ expansive short story “Tlön, Uqbar,
Orbis Tertius.”

There are no nouns in the conjectural Ursprache of Tlön, from which
its “present-day” languages and dialects derive: there are impersonal
verbs, modified by monosyllabic suffixes (or prefixes) functioning as
adverbs. For example, there is no noun that corresponds to our word
“moon,” but there is a verb which in English would be “to moonate”
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or “to enmoon.” “The moon rose above the river” is “hlör u fang
axaxaxas mlö,” or, as Xul Solar succinctly translates: Upward, behind the
outstreaming it mooned.

His use of the phrase “Axaxaxas Mlö” in “The Library of Babel” is presumably
a reminder that even books written in the Ursprache of Tlön, including all
volumes of the first and second editions of the Encyclopedia of Tlön, are in the
Library. A careful reader may object that volume 11 of the First Encyclopedia
of Tlön consists of 1,001 pages, while Library books number only 410. Our
rejoinder is that three books of the Library, the last of which will contain 229
blank pages—blank spaces filling each slot—yield the necessary 1,001 pages.
Of course, they may not be shelved anywhere near each other, but this in no
way negates the fact that the 11th volume is in the Library. A variation of this
observation refutes Rucker’s casual statement that “the minute history of the
future” can’t be contained in the Library, in Infinity and the Mind, pp. 121–22.
The minute history of the future is contained in the Library; it is found
in volumes perhaps scattered throughout the Library. There is no implicit
promise that the information in the Library is accessible or verifiable—it just
must be there, somewhere.

3. From the 1875 Grindon citation under the definition of “septillion” in the
Oxford English Dictionary. “Thousands of plants consist of nothing more than
a few such cells as in septillions make up an oak-tree...”

4. In the words that comprise “The Library of Babel,” Borges adroitly finesses the
fact that by being restricted to a mere 25 symbols, the books of the Library
could not contain both upper- and lower-case symbols, let alone diacritical
and punctuation marks beyond the comma and the period. The story, as
written, could not appear in the Library. In this book, when we are referring
to imagined entries in the Library, we will hew to the standard set by Borges
and not restrict ourselves to using only the orthographic symbols of all upper-
case letters (or lower-case letters), spaces, periods, and commas.

Chapter 2

1. For a mathematically sophisticated reader: in fact, one may imagine that at
some distant point in the future, we might have a superfast supercomputer
running an algorithm that

1. Was able to test for primality every number expressible in 100 digits.
2. Kept a tally of the number of primes without listing them.
3. Output simply the number of primes N expressible in 100 digits.

Then,

4. Determine if N is odd or even.
5. Determine, if N is odd, which numbered prime is the median of

the set.
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6. Determine, if N is even, which two numbered primes average to
the median of the set.

Then,

7. Run the algorithm again, keeping count until the number(s) from
step 5 (or 6) is (are) achieved.

8. Output the median!

At no point was a list of all primes necessary.

Chapter 3

1. See Salpeter, for example, on “The Book of Sand.”

2. Benardete, quoted in Merrell on page 58, independently thinks along similar
lines.

3. Another fine point for the interested: obviously we’re capitalizing on the fact
that the number of pages is countably infinite.

4. If a mathematically sophisticated reader is worried about the need to invoke
the axiom of choice, the issue is easily sidestepped by assigning the same
infinitesimal, ß, for the thickness of each page.

Chapter 4

1. For the mathematically adventurous reader: in fact, the famous Hopf fibration
of the 3-sphere decomposes the 3-sphere into great circles over a base space
equivalent to the 2-sphere.

2. A point for a mathematically sophisticated reader: earlier in this chap-
ter, we observed that the gravitational field of the Library needed to be
imposed by the builders of the Library. Since the Library presumably does
not possess any regions of zero gravity, it is vital that the 3-manifolds
under consideration may be equipped with everywhere nonzero vector
fields. But of course they can, since all 3-manifolds have Euler charac-
teristic equal to 0, entailing the existence of everywhere nonzero vector
fields.

3. A way to see that the surface of a coffee mug is the same as the surface of
a donut is to simply shrink the “cup” part of the mug to the strip that lies
between the joining spots of the handle to the mug!

4. Another way around this problem would be to require that the orthographic
symbols be symmetric under 90◦ rotations, too. For example, the symbols O,
X, +, ⊗, ⊕, and � satisfy this criterion.

5. Technical note: as the Library stands, we couldn’t actually use an exact cube
to construct the Library, for the number of hexagons is not a perfect cube.
That is, the number of hexagons is not of the form x3 for some integer x.
However, by tinkering with the number of hexagons on each floor, it would
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be possible to have a shape very close to a cube. If done carefully, it would be
equally easy to make the identifications between the sides of the near-cube,
and the end result would be just slightly less symmetric.

Chapter 7

1. An Argentine colleague, Martin Hadin, brought to my attention a 1971 dia-
logue between Borges and Herbert Simon that suggests Borges was intrigued
by these kinds of ideas, but previously unaware of them. The dialogue appears
in Primera Plana, January 5, 1971.

Chapter 8

1. The interesting readings in Wheeler, Alazraki, Bell-Villada, Barrenechea,
Rodriguez Monegal, Slusser, Ammon, Eco, Keiser, Nicolas, and Faucher, for
example, fall outside this domain. Although I might differ with the conclu-
sions they draw, it seems to me that Nicolas and Faucher get the math correct.

2. An infinite set is countable (also called denumerable or more precisely, countably
infinite) if it can be placed into one-to-one correspondence with the positive
integers. In effect, this means that one may write down all the elements of
the set in an orderly (infinitely long) list.

1. ↔ “first” element of the set
2. ↔ “second” element of the set
3. ↔ “third” element of the set
etc.

It’s easy and not inaccurate, therefore, to think of “countable” as synonymous
with “listable.” Cantor, the creator of set theory and the theory of transfinite
numbers, was presumably shocked to discover that the rational numbers are
countable. Regardless, in one of the most beautiful arguments in mathematics,
he demonstrated that the irrational numbers are not countable or listable. Any
set that is not listable is called uncountable or uncountably infinite.

3. If, for example, I begin by assuming, “The moon is made of green cheese,” I
can derive a whole host of interesting implications from that premise, such as
that dairy farmers and cheese manufacturers may be responsible for the lack of
missions to the moon in recent years. That if we built cheese-harvesting facto-
ries on the moon and sent back enormous loads of cheese, the world hunger
situation might be abated. And so on. However, the original premise is false, so
it doesn’t matter how interesting or plausible the ensuing speculations are to us.

Chapter 9

1. For the reference to “The Total Library,” see Collected Fictions, p. 67. For the
essay itself, see Selected Non-Fictions, p. 214.
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2. See Burton, p. 95. The quote is lifted from Part 2, Sec. 2, Memb. 4 of Burton’s
colossus.

3. A marvelous, witty experiment was performed at the Paignton Zoo in Devon
in 2003. Six Sulawesi crested macaque monkeys were placed in a cage outfitted
with a computer, ostensibly to see if, between them, the monkeys might pro-
duce some work of Shakespeare over the course of a week of random typing.
As reported by David Adam, science correspondent for The Guardian, “The
macaques—Elmo, Gum, Heather, Holly, Mistletoe, and Rowan—produced
just five pages of text between them, primarily filled with the letter S. There
were greater signs of creativity towards the end, with the letters A, J, L and M
making fleeting appearances, but they wrote nothing even close to a word of
human language.”

4. Ferrero and Palacios, Hayles, and especially Hernández have written more
about Borges and ℵ0.

5. This “endless map of Brouwer” goes by the mathematical name of Brouwer’s
fixed point theorem. The main idea is that if a nice enough space is mapped
into or onto itself, then there must be at least one point that the map does
not move, a fixed point. An intuitive way of seeing this is fundamentally
similar to Josiah Royce’s construction, which is briefly quoted and discussed
on page 146. For Royce, an exact smaller image of England is on a map.
But if the map is exact, then there is an unimaginably smaller version of the
map on the map. And that version must also have a smaller version contained
within. These images, each one contained in the previous, appear to shrink to
a point. In fact, they do: the math capturing Royce’s idea was formally stated
and proved by Banach and others in the early 1920s, and today the result
goes by the name of the contraction mapping principle. In Variaciones Borges,
John Durham Peters takes a deep look at philosophic connections between
Borges, Royce, and William James. He also considers Royce-type maps from
many perspectives, delineating some interesting mathematical and situational
implications, and using these ideas to meditate on the real world in contrast
to mathematics.
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Glossary

Thus we may define the real as that whose characters are independent of what
anybody may think them to be.

—Charles Sanders Pierce, How to Make Our Ideas Clear

You who read me—are you certain you understand my language?
—Jorge Luis Borges, The Library of Babel

In some cases, the phrases and clauses that follow should be considered
more as gestures and less as definitions: they’re not necessarily meant
to be rigorous or precise, but rather to evoke a way of understanding
the mathematical object. For those with internet access and inclination,
Wikipedia at www.wikipedia.org stands up as a surprisingly good source
for formal definitions. Wolfram’s MathWorld at mathworld.wolfram.com
is equally good, and perhaps less subject to malicious or mischievous hacks
and prankings.

Beyond standing the test of time and invoking chills of the mythologic,
the stacks of libraries stocked with math books are invested with the
pregnant allure of opening crisp new or musty old books, and then using
indices to seek out appearances of the term or concept. By so doing,
you may follow Borges’ footsteps through dim-lit libraries, tracking the
spoor left by the intellectual history of an idea and slowly netting it with
your growing framework of context and insight. Libraries are cultural
resources eroding byte by byte under the rising tide of digitization. I
point this out partly as a lament, but mostly as a tedious reminder for
those so inclined to seize the opportunity to use libraries before they
change beyond recognition.

www.wikipedia.org
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1-space The Euclidean line. The real number line. One-dimensional
space.

1-sphere A circle contained in a plane. All the points in a plane that are
the same fixed distance from a particular point.

2-space The Euclidean plane. The Cartesian coordinate plane. Length
by width. The x-y plane. Two-dimensional space.

2-sphere A basketball. A soccer ball. The generalization of the 1-sphere
to a higher dimension. All the points in 3-space that are the same fixed
distance from a particular point.

3-Klein bottle A three-dimensional analogue of the Klein bottle. A
nonorientable object living in higher dimensions that is formed by
identifying the faces of a solid cube or hexagonal prism. A somewhat
improbable model for the universe that is the Library.

3-space The space we appear to live in. Volume. Length by width by
height. The x-y-z space. Three-dimensional space.

3-sphere The generalization of the 2-sphere to a higher dimension. A
geometric object that lives naturally in 4-space. All the points in
4-space that are the same fixed distance from a particular point. A
model for the universe that is the Library which satisfies the particulars
of the Librarian’s classic dictum as well as those of the Librarian’s
solution.

3-torus The generalization of the torus to higher dimensions. A geo-
metrically flat object that lives most naturally in 6-space, although it
may inhabit 4-space. A solid object living in higher dimensions that
is formed by identifying the faces of a solid cube or hexagonal prism.
The most sensible model (whatever that means) for the universe that
is the Library.

4-space In the context of our universe, 4-space is often called the space-
time continuum, and can be thought of as (Volume) × (One time
dimension). In this book, though, it’s (Volume) × (Another Euclidean
dimension). The w-x-y-z space. Four-dimensional space.

annulus An annulus is the area between two concentric circles in the
Euclidean plane. Topologically, it is the same as a cylinder, or a can
that has had the top and bottom removed.

Archimedean property Often stated in the form that there is no largest
integer. This is then usually flipped, by taking reciprocals, to conclude
that there is no smallest positive number. It’s then easily generalized
to point out that all real numbers are beset and besieged by other real
numbers, none of which is “closest.”
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axiom A statement so fundamentally in accord with our intuition and
experience of the world that we are willing to accept it as a basis for
all future developments. A logical “given.”

base of an exponent The number that is multiplying itself some fixed
number of times. For example, in the expression 53 = 5 · 5 · 5 = 125,
the number 5 is the base of the exponent.

Brouwer’s fixed point theorem In its simplest form, Brouwer’s fixed point
theorems says that if we take any closed disk in the plane and twist it,
stretch it, contract it, rotate it, and do what we will with it, and then
squish the transmogrified disk back down into the plane so that it lies
within its original boundaries, then there must be at least one point
that is unmoved. That is, despite all the distortions and contortions,
there must be a fixed point.

Cavalieri’s principle Cavalieri’s principle is a way to think of the volume
of an object as the sum of infinitely many infinitesimally thin slices
of the object. In calculus terms, for a sufficiently “nice” object,
we can integrate the areas of the slices to find the volume of the
object.

chiliagon A thousand-sided polygon. A chiliagon on the page of this
book would be virtually indistinguishable from a circle. Descartes
used it as an example of a geometric object that’s easy to define but
impossible to visually imagine within the mind’s eye.

circular logic See “illegitimate deduction.”
circumference The circumference of an n-sphere, for any dimension n, is

the distance around the equator of the sphere. The distance around
any great circle of the sphere. If the radius of the n-sphere is r , then
2r is the circumference.

closed interval A closed interval of the real number line is the set of all
points between two numbers, inclusive of the endpoints. For example,
the closed interval between 1 and 7 is the set of all numbers x such
that 1 ≤ x ≤ 7.

codimension The codimension of a geometric object living in some n-
space is the difference in dimensions between the object and the
ambient space. For example, a line is a one-dimensional object. The
codimension of the line in 2-space is equal to 1. The codimension
of the line in 3-space is equal to 2. The codimension of the line in
4-space is equal to 3. The codimension of the line in n-space is equal
to (n – 1).
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combinatorics Combinatorics is the art of counting something in two
different ways, setting those equal to each other, and thereby finding a
formula with general applicability. A lot of interesting combinatorics
can be done by thinking carefully about the many ways different
colored balls can be placed into barrels.

countable A set is countable if it can be put into one-to-one correspon-
dence with the positive integers. If the elements of a countable set are
playing musical chairs and there is a chair for each positive integer,
when the music stops every element will be able to find a seat, every
time. Such a set is also called countably infinite.

definition See “definition” or “self-referential.”
denominator The denominator of a fraction is the number dividing into

the numerator. The bottom of the fraction. The basement of the
fraction. In the expression 3/5, the denominator is 5.

empty set, complete list of elements contained within See page xlii.
Euclidean space A space satisfying Euclid’s postulates. See also 1-space,

2-space, 3-space, 4-space, etc.
exponential notation A remarkably condensed and useful notation that

captures the idea of a number multiplying itself some specified number
of times. In this book, we use it only for integer self-multiplications,
but the ideas can be extended so that all real numbers are legiti-
mate exponents. With somewhat more difficulty, the ideas may be
further extended so that imaginary and complex numbers may also
serve as exponents.

factor (noun) A positive integer which, when multiplied by another
positive integer, produces yet another positive integer of situational
interest.

factor (verb) Given a positive integer, it’s the finding of the factors (noun)
that multiply each other to produce the original integer.

factorial A useful notation for positive integers that often crops up in
combinatorial formulas. Generalized by the gamma function. Approx-
imated by Stirling’s formula. See the section “Notations” for a formal
definition and an example.

Fibonacci sequence Counts, for each successive generation, the number of
immortal rabbits living in an infinite universe. Has terms whose ratios
converge to the Golden Mean. Arises in surprising places in nature. Is
related to logarithmic spirals. Is the object of study of entire books.
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fixed point A fixed point of a function that maps from a space to itself
doesn’t move. For example, if we map the real numbers to themselves
by the function f(x) = 3x, then f(0) = 3·0 = 0, entailing that 0 is a
point fixed by the function.

flat Describes a geometric object equipped with a notion of distance
which may be precisely the same as in Euclidean space. For example,
although curved, the surface of a cylinder is flat, because to find the
distance between two points, the cylinder may be “cut open and
unrolled” and “laid flat.” Then the two points may be connected by a
Euclidean straight line and then “rerolled.”

fractal An object with a dimension that is not an integer. An object that
continues to present visual complexity under increased magnification.
Clouds, bark, lungs, leaves, coastlines, strange attractors, the Koch
snowflake curve, the Cantor set, . . .

function A way of relating two spaces. A way of relating a space with
itself. A way of corresponding elements of one set with elements of
another set. A systematic process that inputs real numbers and outputs
real numbers.

Funes-like Ireneo Funes is a character in a remarkable Borges short story
who is gifted and afflicted with essentially perfect memory. Funes
spends more than a day reliving every detail of a day.

gamma function An elegant way of generalizing the concept of the facto-
rial of a positive integer to that of all real numbers.

glossary See “definition” or “self-referential.”
great circle An equator of an n-sphere. A circle of maximal size that can

be contained in an n-sphere.

hexagonal prism A hexagon is a symmetric six-sided object contained
in a plane. A hexagonal prism is a three-dimensional object whose
horizontal slices are filled-in hexagons.

homomorphism A function maps elements of one set to elements of
another set. A homomorphism is a function that also preserves alge-
braic relations during the mapping; for example, we can think of inte-
gers as points in the set of real numbers, but we can also think of num-
bers as things that do algebraic stuff, such as addition and subtraction.
A homomorphism maps integers both as elements and as algebraic
objects. If this intrigues, see Gallian’s Contemporary Abstract Algebra.

hyperreal number An infinitesimal affiliated with any nonzero real
number.
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hyperreal number line The real number line, combined with all the
hyperreals affiliated with each real number.

illegitimate deduction See “circular logic.”
infinitesimal An idea used by Euler, Newton, and Leibniz in thinking

about calculus. Infinitesimals may be thought of as actual numbers in
a logically consistent way, and may loosely be thought of as entities
that have “magnitude” greater than 0 but are smaller than every
positive real number. Every real number x can logically be thought
of as being surrounded by infinitesimal hyperreal numbers that are
closer to x than any other real number.

initial position The starting point for a Turing machine.
integers The set of whole numbers { . . . -2, -1, 0, 1, 2, . . . }.
internal state A particular set of instructions for a Turing machine, telling

the Turing machine what should be done in response to each possible
input.

irrational numbers The set of real numbers that can’t be written in the
form of a fraction p/q, where p and q are both integers. When an
irrational number is written out in decimal form, the digits in the
expansion neither terminate nor turn into a repeating pattern.

Klein bottle A torus that has lost it’s way in 4-space. A boundaryless
nonorientable two-dimensional object.

Koch snowflake curve A pleasantly symmetric example of a fractal that
appears in a math book that Borges reviewed. One unusual property
that it possesses is that the distance between any two points is infinite.
The more closely we look at any portion of the snowflake curve, the
more detail emerges.

lemma A lemma is an assertion not quite important enough to be called
a theorem.

libit Short for “library unit.” A library unit is a collection of contiguous
hexagons sufficiently large to hold all 251,312,000 distinct volumes and
sufficiently symmetric that copies of it are able to tile the infinite
3-space model of the Library.

locally Euclidean A space is locally Euclidean if at every point of the
space, a severely myopic individual is convinced that they are, in fact,
inhabiting a Euclidean space. As an example, consider the circle. It is
clearly not a Euclidean line, but if you have access to a math program
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or drawing program that allows you to zoom in on an object, and you
zoom in on any point, you’ll find that what began as looking like a
curve looks a lot like a straight line. Thus, a circle is locally Euclidean.

logarithm The logarithm is a function characterized by several remark-
ably useful properties. All of these stem from the fact that it is the
inverse function to the exponential function in base 10. (An inverse
function cancels the effect of its corresponding function.)

lower bound A minimal estimate. “At least thus-and-such.”

manifold A shorter name for a locally Euclidean space.
map Another name for a function, for we can think of a function not

only as taking inputs and returning outputs but also as taking a point
and mapping it, or moving it, to another point.

median The median of a finite set of numeric data is a kind of a middle
number: half of the data will be larger than the median, and half will
be smaller.

Möbius band A Möbius band is a nonorientable, one-sided surface with
one boundary circle. Taking two Möbius bands and gluing them
together along their boundary circles produces a Klein bottle! (This
is not an obvious construction.)

non-Euclidean Any space that is not a Euclidean space. For example,
all manifolds, including spheres, tori, and Klein bottles, are
non-Euclidean. A cylinder, a figure eight, and a spiral are all
non-Euclidean. Typically, though, we’d only refer to a space as
non-Euclidean if it’s everywhere locally Euclidean.

nonorientable space Best defined in opposition to an orientable space: in
an orientable two-dimensional manifold, at any point we may choose
a definition of “up” and “right,” and then, regardless of the path
we navigate through the space, when we return to our beginning
point our notions of “up” and “right” will agree with those that we
originally chose. By contrast, in a nonorientable two-dimensional
space, after making choices of “up” and “right,” there are circuitous
paths we may follow such that when we return to the starting point,
either “up” will look like “down” or “right” will appear “left.” In
a three-dimensional manifold, we’d also have to choose a “front” to
make a legitimate definition.

nonstandard analysis Logically sound mathematics done with infinitesi-
mals and hyperreal numbers.
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numerator The numerator of a fraction is the number being divided by
the denominator. The top of the fraction. The attic of the fraction.
In the expression 3/5, the numerator is 3.

one-to-one correspondence This is a map between sets A and B such that
every element in A is sent to a distinct element in B and every
element in B has exactly one element of A mapped to it. If A and
B are finite sets, it means that they each have the same number of
elements. If A and B are infinite sets, the implication is that they have
the same cardinality.

origin The point in coordinatized n-space such that all coordinates are
0. The point where the axes all intersect. An arbitrarily chosen point
that serves as the center of the space.

periodic A pattern is periodic if it repeats over and over. For example,
the pattern of letters MCVMCVMCVMCV is periodic of period
3. The earth orbiting the sun is an example of periodic motion. A
wallpaper pattern may be periodic.

power of 10 An exponential expression with a base of 10. Examples
include 103, 10100, and, more abstractly, 10n , which signifies “some
power of ten.”

prime number A number p whose factors are limited to 1 and p . No
other positive integer may divide a prime number.

product Another name for the act of multiplication.

raised to a power Another phrase for raising a base by an exponent.
Another way of saying that a number is being multiplied by itself a
specified number of times.

rational numbers All numbers of the form p/q, where p and q =/ 0 are
both integers.

real numbers The set of all rational and irrational numbers.
real number line Euclidean 1-space. The set of real numbers identified

with points on the Euclidean line.

self-referential See “self-referential.”
set A collection of objects, usually called elements. If memory serves

correctly, “set” is the word in the English language with the most
definitions—at any rate, the 2nd edition of the Oxford English
Dictionary runs to 23 pages of definitions and citations for the word
“set.”



g l o s s a ry S 173

set of measure 0 An inconsequential set. A set that essentially occupies
none of the ambient space that it lives in. Pick an arbitrarily small
number c: a set of measure 0 can be covered by—contained in—
countably many sets whose diameters sum to a number smaller than
c. (The diameter of a set may be thought of as the maximal distance
across it.)

set theory One of the foundations of modern mathematics. One of
the underlying languages of modern mathematics. A collection of
seemingly unassailable intuitions about objects in our world.

space A collection of points, often equipped with some notion of
distance between points.

Stirling’s approximation to the factorial A way of approximating n! using
Euler’s constant e , exponentials, square roots, and 2. See, for exam-
ple, page 616 of Apostol’s Calculus, Volume II for a derivation of the
formula.

subset A subcollection of a set. A subset of a set can be the whole
set, some of the set, or none of the set. The subset consisting of no
elements is called the empty set. See “empty set.”

tiling of space An object tiles a space if clones of the object completely
fill out the space with no interstices or overlaps. For example, it’s not
too hard to see that squares tile the plane and that cubes tile 3-space.
Bisecting the squares along diagonals shows that triangles also tile
the plane. Looking at a beehive suggests how hexagons may tile the
plane, which in turn suggests the correct belief that hexagonal prisms
tile 3-space.

topology Very loosely, topology is the study of the possibilities and
immutable characteristics of spaces.

torus The surface of a donut or bagel. A good example of a two-
dimensional locally Euclidean space.

transfinite numbers These days, most mathematicians would call trans-
finite numbers either infinite cardinal numbers or infinite ordinal
numbers. As the name suggests, transfinite numbers are beyond the
finite, and they are truly unimaginable.

uncountable Describes an infinity infinitely larger than countably infinite.
The cardinality of the set of irrational numbers.

unique factorization The property enjoyed by the positive integers that
they may be decomposed into products of primes in essentially only
one way.
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upper bound A maximal estimate. “There are at most thus-and-such.”

Venn diagram A way of viewing unions, intersections, and subsets of
collections of sets by representing the sets as circles.

well-ordering principle A surprisingly contentious axiom or theorem
(depending on the system) that says every set of positive integers
contains a least element. The reason some mathematicians and logi-
cians reject the well-ordering principle is that it is used to facilitate
kinds of deductions that may lead to disturbing conclusions.



Annotated Suggested Readings

All books are divisible into two classes, the books of the hour, and the books of
all time.

—John Ruskin, Sesame and Lilies

I was impressed for the ten thousandth time by the fact that literature illumi-
nates life only for those to whom books are a necessity. Books are unconvertible
assets, to be passed on only to those who possess them already.

—Anthony Powell, The Valley of Bones

In this section, I list a few readings that in one way or another go deeper
into ideas raised in this book. I’ve loosely organized them, mostly by the
chapter that they illuminate. Like most of my book, the list is somewhat
idiosyncratic; books and articles appearing tend to have had a lasting
impact on me, or, in a few cases, received a strong recommendation
from someone I respect. For more personalized recommendations, feel
free to write me at <babel.librarian@gmail.com> describing your math
background and the kinds of things you’d like to learn. Publication details
for each book may be found in the Bibliography.

Generally Delightful

The Heart of Mathematics, by Edward B. Burger and Michael Starbird.
Burger and Starbird produced a funny, inspirational, eminently read-

able book pitched at the level of bright high school students and college
students who haven’t (yet) had a lot of training in mathematics. It’s almost
as if they thought, “What are the niftiest ideas in math that don’t need a
deep theoretic background? How can we get them all into one book?”
and then went ahead and did it. Great problems are found at the end of
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every chapter, and some answers are included. It’s worth mentioning that
Starbird is a raconteur of the first order, and Burger worked as a stand-up
comedian before becoming a mathematician.

The Pleasures of Counting, by T. W. Körner.
This remarkable book unites a host of topics by the common theme of

mathematics making a difference in solving real-world problems. Körner
opens the book with a discussion of how Dr. John Snow essentially
invented epidemiology when he analyzed data pertaining to cholera out-
breaks in the middle 1800s. Körner moves with ease from there through
contributions to thwarting submarine warfare, development of radar,
cracking the Enigma code, and a host of other fascinating applications.

Generally Thoughtful

“What Is Good Mathematics?” by Terence Tao (Bulletin of the American
Mathematical Society 44(2007): 623–34, available as a free .pdf download
from the American Mathematical Society at http://www.ams.org/
bull/2007-44-04/S0273-0979-07-01168-8/S0273-0979-07-01168-
8.pdf)

The Fields Medal is often called the Nobel Prize for mathematics,
although it differs from the Nobel in several key ways. For one, the Fields
is only awarded once every four years—although in recent years there’s
been a tendency to award it to four people each time. The second is
that a recipient must be under the age of 40, and the selection committee
hews to this: Andrew Wiles’ proof of Fermat’s last theorem was completed
when he was slightly older than 40, and while he received a special medal
and recognition, he did not receive the Fields Medal. Terence Tao is a
2006 Fields Medalist, and in this two-part article, he tackles an elusive
question, “What is good mathematics?” His thoughts in the first part are
quite interesting and accessible to all; in the second part, he illustrates
some of his categories of “good math” via a case study of Szemerédi’s
theorem.

Patterns

Symmetry, by Herman Weyl.
Weyl was a mathematician who did a lot of work in physics, notably

quantum mechanics. This classic book explores symmetry in nature and
mathematics. Weyl once told Freeman Dyson, “My work always tried to
unite the true with the beautiful, but when I had to choose one or the

http://www.ams.org/bull/2007-44-04/S0273-0979-07-01168-8/S0273-0979-07-01168-8.pdf
http://www.ams.org/bull/2007-44-04/S0273-0979-07-01168-8/S0273-0979-07-01168-8.pdf
http://www.ams.org/bull/2007-44-04/S0273-0979-07-01168-8/S0273-0979-07-01168-8.pdf
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other, I usually chose the beautiful.” I’m not sure they’re words to live by,
but I find them profound.

Number Theory

The Mathematics of Ciphers, by S. C. Coutinho.
Coutinho is a computer scientist in Brazil. The book consists of

engaging expositions of primality, prime number testing, and the RSA
cryptography scheme intended for a first-year class in computer science.
The translated work is relatively easy to read and builds to some interesting
ideas. Because it was slated for nonmathematicians, Coutinho’s perspec-
tive is that of a keen-eyed outsider.

“It Is Easy to Determine Whether a Given Integer Is Prime,” by
Andrew Granville (Bulletin of the American Mathematical Society 42(2004):
3–38, available as a free .pdf download from the American Mathemat-
ical Society at http://www.ams.org/bull/2005-42-01/S0273-0979-04-
01037-7/S0273-0979-04-01037-7.pdf)

This article summarizes and explains some of the huge breakthroughs
that occurred in the search for “large” prime numbers after Agrawal,
Kayal, and Saxena’s paper “PRIMES is in P” appeared in 2004. By my
highly subjective rating, although very much worth the effort, this is
the hardest reading appearing on this list, and it probably requires the
equivalent of an undergraduate degree in mathematics. Because this field
is exploding, and because of the importance to e-commerce, I’d guess
that all of these results have since been extended and refined, but still it’s
worth a look.

Real Analysis and Measure Theory

The Pea and the Sun: a Mathematical Paradox, by Leonard Wapner.
Wapner’s book is pitched at the level of bright, mathematically

inclined high school students who’ve (perhaps) heard of the Banach-
Tarski paradox. This counterintuitive construction explains how to dis-
assemble a small solid ball into a finite number of nonmeasurable sets,
and then reassemble the pieces into a very large solid ball. Along the way,
Wapner gets at some of the ideas of measure theory, and gives nice proofs
that lead up to the main result. I liked this book a lot.

Measure and Category, by John C. Oxtoby.
This slender book is one of the publisher Springer-Verlag’s infa-

mous yellow “Graduate Texts in Mathematics.” (Infamous among math

http://www.ams.org/bull/2005-42-01/S0273-0979-04-01037-7/S0273-0979-04-01037-7.pdf
http://www.ams.org/bull/2005-42-01/S0273-0979-04-01037-7/S0273-0979-04-01037-7.pdf
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graduate students, at any rate.) Although it’s probably necessary to have
the equivalent of an undergraduate math education to profit from reading
it, the writing is so light, clean, and lively, and the results are so enraptur-
ing, I am pleased to recommend it.

Nonstandard Analysis

The Problems of Mathematics, by Ian Stewart.
Although Stewart’s book encompasses many other nifty mathematical

ideas, in particular it contains a chapter outlining the nuances and the
history of some of the issues surrounding nonstandard analysis, including
the subtle distinction between Leibniz’s static infinitesimals and Newton’s
variable fluxions.

Non-standard Analysis, by Abraham Robinson.
Robinson’s seminal work is for an enterprising individual with the

equivalent of, say, a master’s-level education in mathematics or logic.

Topology, Manifolds, and Cosmology

The Shape of Space, by Jeff Weeks.
Weeks has produced a luminous work, comparable to Oxtoby’s Mea-

sure and Category, that takes advanced ideas and presents them so clearly
and compellingly that it feels like everyone could and should read it.
At any rate, if you were gripped by the Math Aftermath “Flat-Out
Disoriented” and need more, Weeks is a good place to start.

A Homomorphism

Contemporary Abstract Algebra, by Joe Gallian.
Gallian’s book is the friendliest introduction I’ve seen to algebraic

groups and homomorphisms. Even so, it’s aimed at sophomore- and
junior-level math majors, and, as such, may require a large dollop of
commitment.

Mathematical Foundations of Information Theory, by A. Ya. Khinchin.
Pretty technical, and redolent with the spare language of the pro-

fessional mathematician, but I learned a lot about information theory
from it when I was just beginning to be interested in mathematics. In
particular, I found the discussions of entropy and information theory lucid
and comprehensible.
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An Introduction to Information Theory, by John R. Pierce.
I haven’t read this, but I stumbled across it when I was looking up the

exact title of Khinchin’s book. It looks good and may be an easier read
than Khinchin’s book.

The Magical Maze: Seeing the World Through Mathematical Eyes, by Ian
Stewart.

Another book by Stewart, a great explainer and popularizer of mathe-
matics. This book, too, is filled with all sorts of good things; among them
is a solid introduction to Turing machines.

Gödel, Escher, Bach: An Eternal Golden Braid, by Douglas Hofstader.
What praise can I apply to this book that hasn’t been already written?

Winner of the Pulitzer Prize, it leads nonspecialists to the ideas of Gödel,
reframes self-referentiality and paradox, and—I think—is the site of the
first appearance of the evocative phrase “strange loop.” It’s marvelously
witty, profoundly deep, and it heralded a new genre in letters.

Gödel’s Theorem: An Incomplete Guide to Its Use and Abuse, by Torkel
Franzén.

Franzén’s book concisely achieves its goal of clearly demarcating the
extent of applicability of Gödel’s theorem. Along the way of accomplish-
ing that, he shows its power and majesty in the fields of set theory and
foundations, and brings into sharp focus many amusing nuances.

Gödel’s Proof, by Ernst Nagel.
Nagel takes a dedicated reader step by step through a proof of Gödel’s

theorem. A classic.

Any Book by Raymond Smullyan, by Raymond Smullyan.
Actually, there is no such book by Smullyan (although I think

he’d appreciate the self-referential title). He’s an influential mathemat-
ical logician who, in addition to publishing serious works, has also
written many highly readable books weaving together Gödel’s theorem,
truth, lies, formal systems, knights and knaves, islands, detectives, logic
machines . . .

Critical Points

Contributions to the Founding of the Theory of Transfinite Numbers, by Georg
Cantor.

Today’s notation looks different, and the formulation of the ideas is
simpler and cleaner, but it’s wonderful to seize the opportunity to read,
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albeit in translation, the seminal work on infinity from the creator of set
theory and the first imaginer of different sizes of infinity.

To Infinity and Beyond, by Eli Maor.
A user-friendly introduction to many forms of infinity, including

Cantor’s notions.

The Divine Proportion, by H. E. Huntley.
Huntley’s work is an accessible reference which rewards a patient

reader with a multiplicity of extrapolations from Fibonacci’s sequence to
the real world.

Openings

Mathematics and the Imagination, by Edward Kasner and James Newman.
A gift from Bioy Casares to Borges, this book is still surprisingly

readable. Today, perhaps most notable for being the introduction of the
word “googol” into the English language. It was coined by Kasner’s nine-
year-old nephew.

Fixed Points, by Yu. A. Shashkin.
Aimed at bright high-schoolers, this is the most elementary exposition

of fixed points and Brouwer’s theorem of which I am aware.
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A set of ideas, a point of view, a frame of reference is in space only an
intersection, the state of affairs at some given moment in the consciousness
of one man or many men, but in time it has evolving form, virtually organic
extension. In time ideas can be thought of as sprouting, growing, maturing,
bringing forth seed and dying like plants.

—John Dos Passos, “The Use of the Past”
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